1) oriented total graph
有向全图
1.
The invariants which determine the graphs is discussed according to the theory of group,then the formula for the characteristic polynomials of an oriented regular covering of a finite digraph and the formula for the characteristic polynomials of an oriented total graph of an oriented regular covering is obtained.
借助于群理论讨论了图的不变量,得到了有向图的正则覆盖及其有向全图的特征多项式的表达式。
2) Total digraph
全有向图
3) complete directed graph
完全有向图
1.
Let DK v denote the complete directed graph with v vertices,covering number C(v,m) of DK v is a minimum number of covering DK v by m circuits.
给出了完全有向图DKv的覆盖数C(v,m),这里v=m+5,2m-3且m是大于1的奇数。
4) semi-partition complete digraphs
半部完全有向图
5) complete symmetrical directional graph
完全对称有向图
6) semicomplete multipartite digraphs
半完全多部有向图
1.
Volkmann 6 raised a problem:determine other sufficient conditions for semicomplete multipartite digraphs such that every arc is contained in a Hamiltonian path.
用一条弧或一对方向相反的弧代替完全多部无向图的每一条边所得到的有向图被称为半完全多部有向图。
2.
The main contents of this thesis involve two aspects of digraphs: the transitivity of multipartite tournaments and the 3— kings-of-kings in semicomplete multipartite digraphs.
本文的研究内容涉及有向图的两个方面:多部竞赛图的传递性和半完全多部有向图的3-王中王。
补充资料:图的减缩图(或称图子式)
图的减缩图(或称图子式)
minor of a graph
图的减缩图(或称图子式)【.皿以ofa脚户;MHHoPrpa中a」【补注】设G是一个图(graph)(可以有环及多重边).G的一个减缩图(nullor)是从G中接连进行下述运算而得的任何一个图: i)删去一条边; 五)收缩一条边; 说)去掉一个孤立顶点. NRobe由on与P.D.Se脚aour的图减缩定理(脚Ph nl的。r theon习11)如下所述:已知有限图的无穷序列G,,GZ,…,则存在指标i
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条