1) subdivision scheme
细分格式
1.
According to the relationship between the subdivision scheme and its difference scheme and the sufficient condition for Ck continuity, we can devise curve subdivision schemes with arbitrary order continuity.
构造了一类收敛的多参数差分格式,根据细分格式和差分格式的关系以及连续性条件可得到任意阶连续的多参数曲线细分格式。
2.
Based on the analysis of the classifical 4 point linear interpolatory subdivision scheme introduced by Dyn, a functional nonlinear discrete subdivision scheme is presented.
在分析 Dyn等人的经典 4点线性插值离散细分格式的基础上 ,提出了一类函数型非线性离散细分格式 ,它具有保凸性质 ,即在满足一定条件时 ,这种格式保证了对于凸数据 ,其每一步细分多边形都是凸的 ,从而极限曲线也是凸的 。
3.
Many subdivision schemes have been proposed in the recent three decades, however, most of them are not capable of both reproducing families of curves widely used in Computer Graphics such as conics, and controlling the shape of the limit curve by a tension parameter.
本文介绍了一种两点Hermite插值细分方法,构造出的细分格式可以重构三次多项式、三角函数和双曲函数空间,而且有一个松弛参数可以调整极限曲线的形状。
2) subdivsion schemes
细分格式
1.
The function sequence {φ_n} is called subdivsion schemes.
函数{φn}列称为细分格式。
3) Butterfly subdivision scheme
Butterfly细分格式
4) accurate integration method
精细积分格式
5) stationary subdivision scheme
稳定细分格式
1.
The stationary subdivision scheme is firstly generized to M Dilation, and its convergence is discussed, then from it obtened the characterizing of the diferentiabiliy of M dilation refinable vector field, by factorization properties of the subdivision operator.
将二进制稳定细分格式推广到M进制 ,讨论了M进制稳定细分格式的收敛性 ,并由之得到了M进制细分向量域正则性的矩阵符号因子分解性刻划 。
6) Interpolatory subdivision scheme
插值细分格式
补充资料:分细
1.详说。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条