1) False neighbors method
伪邻近点法
2) false neighboring method
伪邻点法
3) Proximal point method
邻近点法
4) proximal point algorithm
邻近点算法
1.
The convergence analysis of an approximate proximal point algorithm for monotone variational inequalities
求解单调变分不等式的近似邻近点算法的收敛性分析
2.
Proximal point algorithms(PPA) arc attractive methods solving monotone variational inequalities(VI).
邻近点算法(PPA)是求解单调变分不等式的一种常用的有效方法。
3.
An approximate proximal point algorithm for solving monotone variational inequalities is constructed,and the convergence of the algorithm is proved under the condition that any indirect step is not required.
给出求解单调变分不等式问题的一个近似邻近点算法,在不需要任何中间步骤的条件下证明算法的收敛性。
5) proximal point algorithms
邻近点算法
1.
In order to solve the problem of set valued mapping equation 0∈T(z),where T is a maximal monotone operator,a new-approximate proximal point algorithms(N-APPA) was given in R~n:For x~k and β_k>0,let x~(k+1)=P_Ω[~k-e~k] with x~k+e~k∈~k+β_kT(~k),‖e~k‖≤η_k‖x~k-~k‖,where (sup)k>0?η_k<1,Ω is domain of T,P_Ω(·) is a projection operator on Ω.
对于求解集值映射方程0∈T(z)问题(其中T为极大单调算子),在Rn中有一种新的邻近点算法(NAPPA):对给定的xk及βk>0,取xk+1=PΩ[ xk-ek],满足xk+ek∈ xk+βkT( xk),‖ek‖≤ηk‖xk- xk‖。
2.
In this dissertation, we focus on adapting proximal point algorithms to solve set-valued equations, variational inequalities problems and optimization problems.
本文主要研究用邻近点算法求解集值映射方程,变分不等式问题和最优化化问题。
6) approximate proximal algorithm
近似邻近点算法
1.
This paper presents a approximate proximal algorithm finding the zero of a maximal monotone operator in Hilbert space,whose error criterion is weaker than that in the literatures.
在Hilbert空间中给出求极大单调算子零点的近似邻近点算法,给出的误差准则比现有的算法弱,并证明该算法生成的序列{xk}弱收敛到算子的零点。
补充资料:邻近点
邻近点
proxiinate point
邻近点[洲叻祖加州成;即~cII。二H。二~],拓扑空间X中集合A的 一点x,其任何邻域均与集合A有非空的交集.集合A的所有邻近点的集合是A的闭包tA}(或记为万)(见集合的闭包(d“uxe of aset)). M.H.B璐扣ex.cK滋撰胡师度白苏华译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条