1) inverse kinematics control
逆运动控制
2) inverse kinematic control
逆运动学控制
1.
Based on a mutual mapping neural network,the inverse kinematic control problem of the free-floating space manipulator system without base control is discussed.
以此为基础,利用双向映射神经元网络及李雅普诺夫直接方法,设计了一种收敛的空间机械臂逆运动学控制方法,以控制空间机械臂的末端位姿朝着惯性空间的期望位姿点运动。
3) control arithmetic of inverse kinematics
运动学逆解控制算法
4) Inverse dynamic control
逆动态控制
1.
Two diagonal recurrent neural networks (DRNN) are utilized to realize the inverse dynamic control strategies for nonlinear systems.
采用2个对角递归神经网络(DRNN)构成非线性逆动态控制系统,一个用作辨识器,逼近系统的正模型,为逆动态控制提供系统的灵敏度;另一个用作控制器,逼近系统的逆动态模型,再与原系统串联组成伪线性系统。
5) Dynamic inversion control
动态逆控制
1.
This method combines the robustness of H_∞ optimal control theory and non-linear decoupled control ability of the dynamic inversion control well,so it is possible to achieve highly nonlinear decoupled control for hypersonic vehicle and restrain the effects of model parameters change in complicated flight conditions.
该方法将H∞最优控制的鲁棒性能与动态逆控制的非线性解耦控制能力有机结合,能够在复杂的飞行条件下,实现对高超声速飞机高度非线性解耦控制;同时还能抑制模型参数变化的扰动,从而确保了高超声速飞机的纵向稳定性,改善了其纵向模态的飞行品质。
2.
A dynamic inversion control method based on variable structure theory is presented according to the feature that hypersonic vehicle model is highly nonlinear,strong coupled and includes uncertain parameters.
针对高超音速飞机模型的高度非线性、强耦合、参数不确定等特点,提出了基于变结构理论的动态逆控制方法。
3.
The dynamic inversion controller is designed for every nonlinear sub-model.
对于每一个子模型,设计相应的动态逆控制器,应用模糊神经网络产生控制器切换决策,实现不同飞行状态下不同模型控制器之间的相互切换。
6) dynamic inverse control
动态逆控制
1.
In this paper, a particle control for a cruise missile is developed through the multiple time scale perturbation method and dynamic inverse control, which is applied to a certain anti-ship.
本文对飞航导弹飞控系统,运用多重尺度奇异摄动理论,和动态逆控制理论, 提出了基于动态逆的质心控制方法,并将该方法应用于某型反舰导弹,仿真结果表明该方法具有良好的控制性能及鲁棒性。
补充资料:步进运动的闭环控制方法
根据增量运动控制协会的调查,步进电机的闭环控制可采用各种不同的方法,其中包括计步(或步校验)、无传感器反电动势检测和有传感器反馈的全伺服控制。
步校验是最简单的位置控制,它采用低分辨率的光电编码器来统计移动步数。用一个简单的电路来比较指令步数和测量到的步数,以校验步进电机是否已移动到指定位置。
反电动势是一种无传感器检测方法,它采用步进电机的反电动势(emf)信号来测量和控制速度。根据增量运动控制协会主席Dan Jones的说法,当速度过低以致反电动势电压低于可检测水平时,将闭环控制切换为开环控制,再完成最终的定位运动,。
全伺服是指始终使用编码器、旋变或其他反馈装置以更精确控制步进电机位置和力矩。世界上已经有一些供应商开始提供这种产品。
Parker Hannifin将有源阻尼和无编码器堵转检测作为反电动势控制方法的补充。步进电机驱动器监视并测量电机绕组的电压和电流信息,并用来改进对步进电机的控制。有源阻尼采用该信息来抑制速度的振荡,使电机得到更多的可用力矩输出——而不是将力矩浪费在机械振动上。无编码器堵转检测使用该信息来检测失步现象,失步对开环控制而言是一个严重问题。
步校验是最简单的位置控制,它采用低分辨率的光电编码器来统计移动步数。用一个简单的电路来比较指令步数和测量到的步数,以校验步进电机是否已移动到指定位置。
反电动势是一种无传感器检测方法,它采用步进电机的反电动势(emf)信号来测量和控制速度。根据增量运动控制协会主席Dan Jones的说法,当速度过低以致反电动势电压低于可检测水平时,将闭环控制切换为开环控制,再完成最终的定位运动,。
全伺服是指始终使用编码器、旋变或其他反馈装置以更精确控制步进电机位置和力矩。世界上已经有一些供应商开始提供这种产品。
Parker Hannifin将有源阻尼和无编码器堵转检测作为反电动势控制方法的补充。步进电机驱动器监视并测量电机绕组的电压和电流信息,并用来改进对步进电机的控制。有源阻尼采用该信息来抑制速度的振荡,使电机得到更多的可用力矩输出——而不是将力矩浪费在机械振动上。无编码器堵转检测使用该信息来检测失步现象,失步对开环控制而言是一个严重问题。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条