1) higher order symmetric dual model
高阶对称对偶模型
2) higher order dual model
高阶对偶模型
1.
A class of higher order dual model in nondifferentiable multiobjective mathematical programming is introduced.
引入了一类不可微多目标数学规划的高阶对偶模型。
2.
In the present paper,a type of higher order dual model is formulated for minimax fractional programming problem.
然后,建立该分式规划问题高阶对偶模型。
3) Higher-order symmetric duality
高阶对称对偶性
4) symmetry and duality model
对称对偶模型
1.
In this paper, a new symmetry and duality model on nonlinear programming is put forward, which is unification of two kind of symmetry and duality models in nonlinear programming.
提出了一个非线性规划的对称对偶模型 ,它统一了非线性规划中两类对称模型。
5) Mond-weir higher-order duality
高阶Mond-Weir对偶模型
1.
In this paper,we introduce a class of Mond-weir higher-order duality in non-differentiable mathematical programming problem and the notions of higher-order V-invexity and higher-order generalized V-invexity.
文章首先引入了一类不可微数学规划的高阶Mond-Weir对偶模型以及高阶V-不变凸、高阶广义V-不变吐的概念。
6) higher order symmetry
高阶对称
补充资料:对称差分(n阶的)
对称差分(n阶的)
symmetric difference of order
对称差分(n阶的)l另11111州tric山ffer曰℃eof份der‘c“MMe邓一,ecK即pa3Hoc几“op,皿Kan」,一元实变函数f在点x上的 表达式 声/n、,.、。,/.n一Zk八 △口ffx,h)=)l:’1(一1)“f lx十二二~一竺二生h 1. 一‘““一””k饥戈k/、‘产“戈一2‘’/‘将h换成Zh,下面的表达式也称为对称差分: 息川(一1)*,‘二+、。一2、)。).假若f(x)在x有n阶导数厂时(x),那么 △二f(x,h)=./戈n)(x)h”+o(h”). T .fl .J’IyKame皿。撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条