1) Principle of potential energy
势能驻值原理
2) principle of resident potential energy
势能驻值原理
1.
Concludes and analyses the physical notion and mathematical method of the principle of resident potential energy, furthermore deducing the derivative principles: principle of invariable potential energy, principle of least potential energy and Timoshenko energy method, the applicable conditions of which are narrated, making the physical and mathematical notions consistent.
对能量法中势能驻值原理的物理概念和数学方法进行整理、归纳和明析,进而推演出该原理的派生原理:势能不变值原理、最小势能原理和Timoshenko能量法,使各基本原理的物理和数学概念协调统一。
2.
By collecting,generalizing and analyzing the physical concept and mathematical method of the principle of resident potential energy,it deduces the derivative principles: principle of resident and invariable potential energy and Timoshenko energy method.
对势能驻值原理的物理概念和数学方法进行整理、归纳和明析,进而推演出该原理的派生原理:势能不变值原理、最小势能原理和Timoshenko能量法,对各原理的适用条件进行了阐述,使各基本原理的物理和数学概念形成协调统一。
3.
Based on the principle of resident potential energy,a nonlinear differential equation of static beams with the nonlinear effect of dead loads is included,and the effect of the dead loads on deflection of cantilever beams is studied by Galerkin method.
应用势能驻值原理,推导出恒载对梁活载挠度影响的非线性微分方程,通过Galerkin方法研究了恒载对悬臂梁活载挠度的影响。
3) principle of stationary potential energy
势能驻值原理
1.
The equation of relationship between the top displacement and the rod angle of frame structure is established according to the principle of stationary potential energy.
根据势能驻值原理建立了框架顶部侧移和杆端转角之间的关系方程,推导出框架结构在水平节点荷载作用下的顶部侧移计算公式,方法简便适用,且计算精度较高,为框架结构顶部侧移的计算提供了一种新的简便计算方法,得出了用D值法求得的框架顶部侧移一般比实际侧移偏大的结论。
2.
Differential equations are obtained according to the principle of stationary potential energy.
根据势能驻值原理,推导得到了平衡微分方程。
4) principle of stationary incremental potential energy
势能增量驻值原理
5) stationary complementary energy principle
驻值余能原理
6) stationary value principle
驻值原理
1.
Because the items be introduced,difference of composite with imperfect interface from one with perfect interface is that stationary value principles of the former is no longer equivalent of variation equations corresponding the principles.
与完美界面不同的是,由于这个积分项的引入,非完美界面复合材料的驻值原理不再与相应的变分方程等价。
补充资料:弹性力学最小势能原理
弹性力学的能量原理之一,它可表述为:整个弹性系统在平衡状态下所具有的势能,恒小于其他可能位移状态下的势能。其中可能位移是指满足变形连续条件和位移边界条件的位移,用来表示。整个弹性系统的势能∏的表示式为:
式中左侧为真实位移ui对应的势能;右侧第一项为弹性体中的应变能,u(εij)为应变能密度,εij为应变分量,Ω为物体所占空间;第二项为体积力构成的势能,fi为体积力分量;第三项为边界外力构成的势能,圴i为给定的面力分量,B2为给定外力的边界面,dB是B2上的面积微元;式中重复下标表示约定求和。
最?∈颇茉砜尚次?
∏(ui)≤∏(),式中的等号只有在可能位移就是真实位移的情况下才成立。最小势能原理实质上等价于弹性体的平衡条件。它可作为弹性力学直接解法和有限元计算(见有限元法)的重要基础。
式中左侧为真实位移ui对应的势能;右侧第一项为弹性体中的应变能,u(εij)为应变能密度,εij为应变分量,Ω为物体所占空间;第二项为体积力构成的势能,fi为体积力分量;第三项为边界外力构成的势能,圴i为给定的面力分量,B2为给定外力的边界面,dB是B2上的面积微元;式中重复下标表示约定求和。
最?∈颇茉砜尚次?
∏(ui)≤∏(),式中的等号只有在可能位移就是真实位移的情况下才成立。最小势能原理实质上等价于弹性体的平衡条件。它可作为弹性力学直接解法和有限元计算(见有限元法)的重要基础。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条