1) operator matrix
算子矩阵
1.
Program diagnosis method based on operator matrix model;
基于算子矩阵模型的程序诊断方法
2.
The necessary and sufficient conditions are obtained for the existence of the rational solutions of differential equations by constructing the differential operator and establishing the operator matrixes,and the corresponding results collected in Ref.
本文主要利用在文[4]中得到的一个定理,通过构造微分方程的线性算子的方法,得到了一个关于微分方程的算子矩阵,从这个算子矩阵向量的线性相关性得到了微分方程存在有理式解的充分必要条件,并举例给出求有理式解的具体方法。
3.
By using the block operator matrix,when the range of A is closed,the sufficient and necessary conditions for the existence of solutions and positive operator solutions of the operator equation AXA*=B and the representation of the solutions are established.
文中利用算子分块的技巧,在算子A值域闭的情况下讨论了算子方程AXA*=B解及其正解存在的充要条件并用算子矩阵的形式给出了它们的具体表示。
3) matrix operator
矩阵算子
1.
Firstly,the region patterns were distinguished according to the set of matrix operator.
该方法首先根据设定的矩阵算子检测出图像中的区域块,然后按照一定的规则判断区域的边界,对区域进行填充,最后得到含有线条和区域边界的图像轮廓。
4) block operator matrices
块算子矩阵
1.
Let Γ be a block operator matrices with respect to Hilbert space H 1H 2, M be a closed invariant subspace of Γ.
设Γ关于Hilbert空间H1 H2 具有块算子矩阵表示 ,M是Γ的闭不变子空间。
2.
At the same time, we give some sufficient conditions of containing relations of the quadratic numerical range of the different block operator matrices of the weighed shift matrix, and draw the figures of quadratic numerical range of these block operator matrices by Matlab program to explain such containing relations.
设作用在Hilbert空间H=H_1(?)H_2上的块算子矩阵(?),块算子矩阵r的二次数值值域定义为在本文中证明了当Γ是紧算子矩阵且W~2(Γ)等于Γ的谱σ(Γ)的充要条件是存在λ,μ∈σ(Γ)使得A=λI或者D=μI且B=0或者C=0,并且给出例子说明存在非紧的分块算子矩阵Γ满足W~2(Γ)=σ(Γ),但是A和D不是对角算子。
5) class matrix operator
类矩阵算子
1.
Some basic concepts such as class matrix operator,relation matrix operator and set matrix are introduced.
将粗糙集中的集合转化为矩阵刻画,通过引入矩阵算子、类矩阵算子,借助截矩阵和关系矩阵,讨论了Paw lak粗糙集和变精度粗糙集中集合关系的矩阵计算及其所具有的一些基本性质。
6) control-operator matrix
可控算子矩阵
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条