1) element energy balance
元体能量平衡
1.
Based on a method of element energy balance,established was a heat exchange model for vertical U-shaped embedded tubes.
基于元体能量平衡法建立了垂直U型埋管的传热模型,模型考虑了流体温度的沿程变化,并通过引入热干扰角与等效传热间距反映两管脚间的热干扰问题,使之更符合实际的传热情况。
2) energy balance system
能量平衡体系
1.
Construction of the global energy balance system and definition of the bionic energy converter;
全球能量平衡体系的构建与仿生型能量转换装置的提出
3) energy balance of human body
人体能量平衡
4) global energy balance
整体能量平衡
5) energy balance
能量平衡
1.
Research of energy balance stabilization control technology to the aluminum electrolytic cell and its application;
铝电解槽能量平衡稳定控制技术研究及其应用
2.
Immediate adjusting short term energy balance of aluminium cell;
铝电解槽短期能量平衡的即时调整
3.
A method for immediate adjusting energy balance of aluminum cell with change of alumina feeding quantity;
随氧化铝加料量变化即时调整铝电解槽的能量平衡
6) energy equilibrium
能量平衡
1.
Predicting the energy equilibrium in system is the basis for enterprise to produce energy saving plan;
预测系统能量平衡是企业制定节能方案的依据
2.
An energy equilibrium model of uniform sediment pick-up flux;
均匀沙上扬通量的能量平衡模型
补充资料:沙量平衡
水文学的重要原理之一。指河流、水库、湖泊、海湾或其部分水域在某一时段内,泥沙的输入量与输出量之差等于该水域在同一时段内泥沙的增量。沙量平衡是质量守恒原理在泥沙运动中的具体应用。输入河段的泥沙主要有:通过上断面带入的,支流、汊道等带入的。输出河段的泥沙主要有:通过下断面带走的,沿河引水和放淤引走的。河段泥沙的增量可以通过施测进口断面和出口断面(包括支流、汊道和引渠等断面)的时段输沙量,包括悬移质和推移质在内,或施测时段始末的河床地形(或控制断面)来求得。水体中的沙量变化一般影响较小,故在后一种方法中常略而不计。
河段的沙量变化情况可用输沙平衡方程(也称泥沙连续方程)表示:
式中为输沙率G的沿程变化率;为河底冲淤量随时间的变化率,其中γ′为河床泥沙干么重,b为河宽;Z0为河底高程;为水体中泥沙量的变化率,其中A为,过水断面面积,s为含沙量。这里的输沙率G包含悬移质的和推移质的。式中后两项之和即为河段内的泥沙增量。和数为零时,表明进入河段的沙量等于输出河段的沙量,称为输沙平衡。在略去水体中沙量变化的影响后,输沙平衡就表明时段内河段上的冲淤量为零。水流挟带悬沙量的能力称为挟沙能力。当上游来沙量小于本河段的挟沙能力与推移质输沙能力之和时,河床将发生冲刷;反之,则发生淤积。这种情况称为输沙不平衡。在自然界中,输沙不平衡是绝对的,必然的;输沙平衡只是相对的,偶然的。在时段总和为输沙平衡中,仍然有时冲时淤,此冲彼淤,即时间上的不平衡和空间上的不平衡。输沙不平衡引起的河床变形,包括纵剖面变形,横断面变形,平面形态变形,河床组成变化等。一般来说,来沙偏多,将发生淤积,纵剖面要变陡,河床组成要变细;挟沙能力和推移质输沙能力相应加大,趋向与来沙量逐渐相应,淤积强度也逐渐减小。反之,来沙偏少,将发生冲刷,纵剖面要变缓,河床组成要变粗;挟沙能力和推移质输沙能力相应减小,趋向与来沙量逐渐相应,冲刷强度也逐渐减小。在此冲、淤过程中,河床平面形态和断面形态的变化也会同时发生。即使是在河段输沙平衡状态下,河段内的此冲彼淤也会使河道变形,如凹岸冲塌、凸岸淤长,深槽和浅滩交替冲、淤等。
上列泥沙连续方程中,γ′和b 值有时变化较大,如水库淤泥和河漫滩上的淤泥,γ′值是随时间而加大的。进行地形测量时就要同时施测γ′值。在塌滩严重和河道摆动迅速的地段,b 值变化较快的,也要进行相应的观测,以便较精确地计算冲淤沙量。
河段的沙量变化情况可用输沙平衡方程(也称泥沙连续方程)表示:
式中为输沙率G的沿程变化率;为河底冲淤量随时间的变化率,其中γ′为河床泥沙干么重,b为河宽;Z0为河底高程;为水体中泥沙量的变化率,其中A为,过水断面面积,s为含沙量。这里的输沙率G包含悬移质的和推移质的。式中后两项之和即为河段内的泥沙增量。和数为零时,表明进入河段的沙量等于输出河段的沙量,称为输沙平衡。在略去水体中沙量变化的影响后,输沙平衡就表明时段内河段上的冲淤量为零。水流挟带悬沙量的能力称为挟沙能力。当上游来沙量小于本河段的挟沙能力与推移质输沙能力之和时,河床将发生冲刷;反之,则发生淤积。这种情况称为输沙不平衡。在自然界中,输沙不平衡是绝对的,必然的;输沙平衡只是相对的,偶然的。在时段总和为输沙平衡中,仍然有时冲时淤,此冲彼淤,即时间上的不平衡和空间上的不平衡。输沙不平衡引起的河床变形,包括纵剖面变形,横断面变形,平面形态变形,河床组成变化等。一般来说,来沙偏多,将发生淤积,纵剖面要变陡,河床组成要变细;挟沙能力和推移质输沙能力相应加大,趋向与来沙量逐渐相应,淤积强度也逐渐减小。反之,来沙偏少,将发生冲刷,纵剖面要变缓,河床组成要变粗;挟沙能力和推移质输沙能力相应减小,趋向与来沙量逐渐相应,冲刷强度也逐渐减小。在此冲、淤过程中,河床平面形态和断面形态的变化也会同时发生。即使是在河段输沙平衡状态下,河段内的此冲彼淤也会使河道变形,如凹岸冲塌、凸岸淤长,深槽和浅滩交替冲、淤等。
上列泥沙连续方程中,γ′和b 值有时变化较大,如水库淤泥和河漫滩上的淤泥,γ′值是随时间而加大的。进行地形测量时就要同时施测γ′值。在塌滩严重和河道摆动迅速的地段,b 值变化较快的,也要进行相应的观测,以便较精确地计算冲淤沙量。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条