1) upper semicontinuity
上半连续性
1.
In terms of the method of scalar assignment,the partly upper semicontinuity of cone efficient solution in infinite dimensional normed spaces is investigated by using the upper semicontinuity of cone positive proper efficient solution,and the generic stability of cone efficient solution is proved.
运用标量化的方法,通过锥正定真有效解的上半连续性讨论了无限维赋范空间中锥有效解的部分上半连续性,证明了锥有效解的通有稳定性。
2.
In the paper,using the method of scalar assignment,we study upper semicontinuity of the general additive solution in infinite dimensional normed spaces by substitute the bounded linear functional in the infinite dimensional vector space for weight in common sense.
作者运用标量化的方法,利用无限维赋范空间中的有界线性泛函代替通常意义下的权重,讨论了无限维赋范空间中广义加权解的上半连续性。
3.
After that,in the Hausdorff topological vector space,the sufficient conditions for the upper semicontinuity of the solution set mapping for the parametric set-valued strong vector equilibrium problems are established.
而后在Hausdorff拓扑向量空间中给出了参数集值强向量均衡问题解映射的上半连续性的充分条件,最后,在赋范线性空间中给出了参数集值强向量均衡问题解映射的下半连续性的充分条件。
2) upper semi-continuity
上半连续性
1.
The purpose of this paper is to study the upper semi-continuity on their solutions of optimisation problems on the cone.
运用通有的方法,研究了在锥变化和挠动的意义下向量优化问题解的上半连续性。
2.
The upper semi-continuity of the global attractor A_αon parameter a for a semilinear hyper- bolic equation in viscoelasticity is discussed by applying some new results.
利用一些最新结果,讨论了带黏弹性的半线性双曲型方程全局吸引子的上半连续性。
3.
For the upper semi-continuous set value maps,the existence of attractors under some conditions and the upper semi-continuity of attractors under the perturbation were proved.
考虑集值映射的动力学,证明了对于上半连续的集值映射在一定条件下吸引子的存在性及吸引子在扰动下的上半连续性,进一步考虑集值映射在微分方程数值模拟中的应用。
3) upper (lower) semicontinuity
上(下)半连续性
4) Cone Upper Semicontinuous Mapping
锥上半连续性
5) approximate upper semi continuity
近似上半连续性
6) upper semicontinuous
上半连续
1.
According to the extensive theory of topological degree for set-valued mapping ,the authors derive the topological degree for upper semicontinuous set-valued 1-set-contractive mapping.
由集值映射的拓扑度延拓理论,推导出了上半连续集值1-集压缩映射的拓扑度。
2.
In this paper,we prove the following theorem:(1)There exist fixed-sets of upper semicontinuous closed-valued correspondences on A_1 and T_I countably compact spaces;(2)There exist fixed-sets of uppersemicontinuous closed-set correspondences on T_1 countably compact spaces.
证明了 A_1可数紧 T_2 空间 X 上的上半连续闭值对应存在不变可数紧子集,T_1可数紧空间 X 上的上半连续闭集对应存在不变可数紧子集。
补充资料:连续性与非连续性(见间断性与不间断性)
连续性与非连续性(见间断性与不间断性)
continuity and discontinuity
11an父ux泊g四f“山。麻以角g、.连续性与非连续性(c。nt,n琳t:nuity一)_见间断性与不间断性。and diseo红ti-
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条