1) applied mechanics
应用力学
1.
The development of applied mechanics in China was reviewed firstly.
应用力学在二十世纪初期,大放异彩,大获成功。
2.
This article traces the development of applied mechanics and its relation to science and engineering by reviewing first the history of mechanics from 1600 to 1900, the physics of the 19th centurys and the engineering education in the same period.
回顾1600年至1900年间力学、19世纪物理学和同时期的工程教育的发展史,描述了应用力学的发展及其与科学和工程的关系。
2) application mechanics
应用力学
3) application in dynamics
力学应用
4) application of thermal dynamics
热力学应用
5) applied thermodynamics
应用热力学
6) applied statics
应用静力学
补充资料:量子力学中的力学量和算符
在量子力学中,当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而是具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。例如,氢原子中的电子处于某一束缚态时,它的坐标和动量都没有确定值,而坐标具有某一确定值r0或动量具有某一确定值p0的几率却是完全确定的。量子力学中力学量的这些特点是经典力学中的力学量所没有的。为了反映这些特点,在量子力学中引进算符来表示力学量。
算符是对波函数进行某种数学运算的符号。在代表力学量的文字上加"∧"号以表示这个力学量的算符。如坐标算符、动量算符。当粒子的状态用波函数 Ψ(r,t)描写时,坐标算符对波函数的作用就是r乘 Ψ(r,t),动量算符对波函数的作用则是微分:
可简单地写为
其他有经典类比的力学量都是r和p的函数,在量子力学中也是算符和的相应的函数。例如粒子绕原点的角动量在经典力学中是L)=r×p,因而在量子力学中角动量算符是
。
又如,在势为U(r)的力场中运动的粒子能量算符(也称哈密顿算符)为
算符是对波函数进行某种数学运算的符号。在代表力学量的文字上加"∧"号以表示这个力学量的算符。如坐标算符、动量算符。当粒子的状态用波函数 Ψ(r,t)描写时,坐标算符对波函数的作用就是r乘 Ψ(r,t),动量算符对波函数的作用则是微分:
可简单地写为
其他有经典类比的力学量都是r和p的函数,在量子力学中也是算符和的相应的函数。例如粒子绕原点的角动量在经典力学中是L)=r×p,因而在量子力学中角动量算符是
。
又如,在势为U(r)的力场中运动的粒子能量算符(也称哈密顿算符)为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条