2) energy loss in transmission
电能传输损耗
3) inductive power transfer
感应电能传输
1.
The background, principle, characteristic and its trend at home and abroad for a new rotor inductive power transfer system are introduced.
介绍了基于新型可旋转变换器的感应电能传输技术的研究背景、工作原理和特点,国内外研究和应用现状,并对它的应用前景作了描述。
2.
Loosely coupled transformer is a key part in contactless inductive power transfer system.
松耦合变压器是非接触感应电能传输系统中的关键部分。
4) medium-voltage power-transmission
中压电能传输
1.
, this paper puts forward a new power-supply and distribution mode of combining the centralized power-supply and the medium-voltage power-transmission, and makes comparison and analysis of the investment and operation cost of the two power-supply modes.
针对高速公路传统的分散式供电方式供电质量差、建设投资及营运费用高等缺陷,提出了集中供电与中压电能传输结合的供配电方式,并以实例具体对两种供电方式的投资、营运费用情况进行了对比分析。
5) contact-less power transmission
非接触电能传输
1.
Optimal parallel capacitor at secondly side can enhance the efficiency of contact-less power transmission system, but the parallel capacitor make the system easily to have multi-resonant frequency when load changes.
效率是非接触电能传输系统研究的一个热点,适当的二次侧并联补偿电容能够提高系统的效率,但加入二次侧补偿电容容易使系统进入多谐振频率状态。
2.
This paper describes a contact-less power transmission system using detachable transformer, which is spark free and no uncovered conduct is exposed to the environments.
本文研究了非接触电能传输系统中一种间接控制负载侧电压的方法。
6) contactless power transfer
非接触电能传输
1.
In a contactless power transfer(CPT) system,a constant current determines the stability and power transfer capability of the entire system.
针对负载切换时造成初级回路的导轨电流变化问题,提出了利用智能分段控制算法来调节控制脉冲中的移相角,分析了非接触电能传输系统主电路的电流恒定性问题,最终保证原边导轨电流的恒定,使得系统能在额定条件下正常工作,并对运用分段控制算法的主电路采用了MAT-LAB的Simulink进行了仿真,通过仿真图可得在负载切换前后电流的恒定时间仅在2 ms之内,结果表明采用分段控制算法的仿真结果与理论分析相符合。
2.
Contactless Power Transfer (CPT) system realizes contactless power transfer from stationary source to movable load via magnetic coupling.
非接触电能传输技术将电能以非接触的方式传递给用电设备,消除了传统供电方式存在的缺陷,是一种安全、可靠、灵活的电能接入新技术。
3.
CPT(Contactless Power Transfer) system realize safe, reliable and high efficiency contactless power transfer from stationary source to movable loads via magnetic coupling.
非接触电能传输技术综合利用电磁感应耦合技术、现代电力电子能量变换技术、大功率高频变换技术(包括谐振变换技术和电磁兼容设计技术等),借助现代控制理论和方法,实现了电能从电源向设备安全、可靠的非接触传递。
补充资料:标准电能表
标准电能表
standard kWhmeter;rotating standard
框图所示。每一个方框都可由几种不同的原理和线路来实现。_」_1_」 图1空三月丽而几指针式标准电能表外形图功率一电压转换级 孩率换级分栩计教级 图2电子式标准电能表方框图 输入级采用分压法或互感器法,将线路电压和负荷电流分别转换为成比例的低电压后,输送至下一级。 功率一电压转换级采用乘法器将输人的两个参量转换为其乘积值(即功率),再把功率转换为与之成正比的电压后,送至下一级。乘法器有多种,常用的有时分割乘法器等。 电压一频率转换级采用积分方式,把输人电压转操为与之成正比的频率后,再送至下一级。电压一频率转换的原理及线路有多种,如恒流反馈式电压一频率转换等。 分频计数级采用分频器降低输人的脉冲频率以便于计数,如ZH:、ZkH:、6kH:等。计数器可采用数字计数器或机械式计数器。分频后设有单独的输出端钮,供自动校验用。 电子式标准电能表的准确级别为0.1及0.05级。在额定条件下,当电流为标定值的80%~120%,。os华=一、eos甲=0.5(滞后)及eos沪=0.5(超前)时,相对误差均小于准确级指数百分数。当线路电压改变额定值的士10%,频率改变额定值的士5%时,误差改变均小于准确级指数百分数的30环。当环境温度改变10℃,误差改变小于准确级指数百分数。b一oozhLJn dlonnengbioo标准电能表(standard kwhmeter;rotatingstandard)校验普通电能表用的准确级别较高的电能表。它分为感应系标准电能表及电子式标准电能表两种。 感应系标准电能表工作原理与普通电能表相同,在结构上制成携带式的。它的计数机构为三位指针式(也有脉冲数显式的),指示圆盘转数从。.01转至100转(见图1)。起动和停止机构有两种形式:一种是在圆盘连续转动的情况下,利用电磁铁将计数机构与圆盘间的传动装置分离或连接,同时对计数机构制动;另一种是切断或接通电压线圈的电压,使圆盘停止或起动。计数机构设有复零装置,能使计数指示全部复零。标准电能表可制成多规格的,如电压为lloV及22oV;电流为IA、SA及10A等;有单相、三相三线及三相四线标准电能表。 感应系标准电能表的准确级别为0.5级及0.2级。在电流为标定值的20%~12。%,cos沪~1及电流为标定值的50%一120%,cos沪一o.5(滞后)时,相对误差小于准确级指数百分数。环境温度改变10’C,频率改变额定值的士5%,电压改变额定值的士10%时,误差改变小于准确级指数百分数。自热特性在标准电能表使用上很重要,要求预热时间短,一般为30min。 电子式标准电能表其准确度较高,可能将取代感应系标准电能表。电子式标准电能表有多种原理和结构,但综合起来可由四个基本环节组成,如图2的方
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条