1) g-inverse
g-逆
1.
The way to determine the reflexive g-inverse of full rank matrix A was discussed.
讨论了当矩阵A为满秩矩阵时求其反射g-逆的方法,并将此方法推广,给出当A为非满秩矩阵时求反射g-逆的一般方法,同时对每一种情况给出了具体的算例。
2.
By applying a decomposition of pairwise matrices,we give some equivalent conditions for two m×n matrices being block independent in g-inverse and reflexive g-inverse over a division ring.
通过使用除环上具有同行或同列的双矩阵分解定理,给出了除环上两个同阶矩阵的g-逆和自反g-逆具有子块独立性的充分必要条件。
3.
By applying the decomposition theorem, we obtain some neccessary and sufficient conditions of reverse order laws for g-inverse and reflexive g-inverse of matrix products on an arbitrary skew field.
利用该分解定理作为工具,获得了任意体上矩阵乘积的g一逆和自反g-逆的反序律的充分必要条件。
2) g inverse
g逆
1.
Necessary and sufficient conditions are established for the product AB -C to have its numerical characters invariant with respect to every minimum norm g inverse, respectively.
利用矩阵论和线性模型理论研究矩阵乘积数值特征的不变性及在统计中的应用 ,给出了乘积AB- C的数值特征和关于每个最小模g逆不变的充分必要条件 。
3) self-reflective g-inverse
自反g-逆
1.
A fast algorithm for calculating the inverst and self-reflective g-inverse and group inverse and Moore-Penrose inverse of the scaled factor circulant matrices of order n is presented by the fast Fourier transform (FFT).
借助快速付立叶变换(FFT),本文给出一种求n阶鳞状因子循环矩阵的逆阵、自反g-逆、群逆、Moore-Penrose逆的快速算法,该算法的计算复杂性为O(nlog2n),最后给出的两个数值算例表明了该算法的有效性。
2.
A fast algorithm for calculating the inverse and self-reflective g-inverse and group inverse and Moore-Penrose inverse of the permutation factor circulant matrices of ordern is presented by the fast Fourier transform(FFT).
借助快速傅立叶变换(FFT),给出一种求n阶置换因子循环矩阵的逆阵、自反g-逆、群逆、Moore-Penrose逆的快速算法,该算法的计算复杂性为O(nlog2n),最后给出的两个数值算例表明了该算法的有效性。
4) reflexive g-inverse
自反g-逆
1.
By applying a decomposition of pairwise matrices,we give some equivalent conditions for two m×n matrices being block independent in g-inverse and reflexive g-inverse over a division ring.
通过使用除环上具有同行或同列的双矩阵分解定理,给出了除环上两个同阶矩阵的g-逆和自反g-逆具有子块独立性的充分必要条件。
2.
By applying the decomposition theorem, we obtain some neccessary and sufficient conditions of reverse order laws for g-inverse and reflexive g-inverse of matrix products on an arbitrary skew field.
利用该分解定理作为工具,获得了任意体上矩阵乘积的g一逆和自反g-逆的反序律的充分必要条件。
5) G inverse semigroup
G逆半群
6) G-inverse matrix
G-逆阵
1.
We have also disussed generalized Fuzzy inverse problem of G-inverse matrix of generalized Fuzzy.
在此基础上,本文继续给出广义Fuzzy可逆阵的一些性质,并讨论了广义Fuzzy可逆阵的G-逆阵的广义Fuzzy可逆性问题,给出了几个判别定理。
补充资料:Radon变换和逆Radon变换
Radon变换和逆Radon变换
X线物理学术语。CT重建图像成像的主要理论依据之一。1917年澳大利亚数学家Radon首先论证了通过物体某一平面的投影重建物体该平面两维空间分布的公式。他的公式要求获得沿该平面所有可能的直线的全部投影(无限集合)。所获得的投影集称为Radon变换。由Radon变换进行重建图像的操作则称为逆Radon变换。Radon变换和逆Radon变换对CT成像的意义在于,它从数学原理上证实了通过物体某一断层层面“沿直线衰减分布的投影”重建该层面单位体积,即体素的线性衰减系数两维空间分布的可能性。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条