1) limited spring deformation
有限弹簧变形
2) deformation of elasticity
弹簧变形
3) Spring deformation
弹簧形变
4) finite deformation photoelastic
有限变形光弹性
1.
This paper introduces computation methods of insides stress and stain in experiment for finite deformation photoelastic method of plane strain, and the function relation between coefficient of transverse deformation and stress is given.
本文介绍了有限变形光弹性方法中平面应变实验,内部应力、应变的计算方法,并给出了横向变形系数与应力之间的函数关系。
5) Finite elastic deformation
有限弹性变形
补充资料:变形力学问题的有限元解法
变形力学问题的有限元解法
finite element methods in mechanics of deformation
b ianxing lixue wenti de youxianyuan Jiefa变形力学问题的有限元解法(finite elementmethods in meehanies of deformation)把变形区画分成有限个单元,按规定程序所进行的数值解法。它是20世纪70年代以来随高速电子计算机的出现而发展起来的对塑性加工力学间题的有效算法,能适应复杂的变形过程和边界条件,对工件材料的性能不需做过多的假设,把物体离散即可直接求得数值解。用于分析金属塑性加工成形间题的有限元法大致可分为弹一塑性有限元法、刚一塑性有限元法和粘一塑性有限元法。 弹一塑性有限元法基于弹一塑性变分原理是适于解析弹一塑材料变形力学问题的数值解法。采用弹一塑性有限元法分析金属塑性加工成形问题时不仅能按变形路径得到塑性区的扩展情况、工件内的应力和应变分布以及工件几何形状的变化,还能处理卸载间题、计算残余应力和残余应变,从而可分析产品缺陷产生的原因及其防止措施。弹一塑性有限元法不足之处是计算工作量大,计算费用高。 刚一塑性有限元法基于刚一塑性变分原理是适于解析刚一塑性材料变形力学间题的数值解法。金属塑性加工成形过程属于大变形过程,与工件塑性变形比较其弹性变形可以忽略,此时工件可按刚一塑性材料模式处理。与弹一塑性有限元法比较刚一塑性有限元法计算工作量小,但不能解析残余应力问题。刚一塑性有限元法在发展的初期主要用来计算各种塑性加工过程的变形力、变形和应力分布等。目前发展到对塑性加工变形过程进行模拟,为制定合理工艺、预测产品缺陷、工件材料的可加工性、确定合理毛坯尺寸和模具设计等提供科学依据。不足之处是在解析精整等小变形的成形过程时不如弹一塑性有限元法精确。 粘一塑性有限元法基于耘一塑性变分原理是适于解析粘一塑性材料变形力学间题的数值解法。粘性是指变形体的应力和应变随时间变化的特征。应变速率对粘一塑性材料的变形抗力有明显的影响。通常弹性变形允许忽略的热塑性加工工件可认为是刚一粘塑性材料。对于热挤压、热轧和热锻等可应用刚一粘塑性有限元法进行变形过程的分析以及进行预成形的设计等。 在CAD/CAM系统中引入有限元法来模拟变形过程、预示应力分布、金属流动、温度场、变形力和功率以及进行预成形和工模具的优化设计等更会显出它的优越性。 塑性加工力学中所用的上述有限元法,其难点在于离散计算的收敛,缺点是计算量大、时间长、成本高。今后应在满足工程精度的前提下来提高计算技巧和效率。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条