说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 低噪声桥面铺装
1)  low noise deck pavement
低噪声桥面铺装
2)  Deck paving
桥面铺装
1.
Connection of damage in deck paving on concrete bridges to design and construction;
混凝土桥面铺装病害与设计和施工的关系浅析
2.
Based on analyzing the performance of epoxy asphalt concrete, the epoxy asphalt concrete as the deck paving in the big span steel bridge can be used.
通过对环氧沥青混凝土性能的分析 ,得出了环氧沥青混凝土在大跨径钢桥桥面铺装中应用的可行性 ,并结合实际研究了环氧沥青混凝土的配制和施工工
3.
The paper states the basic form of deck structure,presents some views of the problemsin current deck paving.
本文论述桥面构造的基本形式,对现行的桥面铺装存在的问题提出了~些看法;调查了现行的桥面铺装的破坏情况并提出了必要的改进措施,对铺装结构提出了供讨论的方案。
3)  Bridge deck pavement
桥面铺装
1.
The causes of cracks of concrete bridge deck pavement layer and its prevention measures;
混凝土桥面铺装层裂缝成因分析及防治措施
2.
The emulation analysis to the temperature effect of the bridge deck pavement of long-span bridge;
大跨度桥梁桥面铺装温度效应仿真分析
3.
Study on the causes of premature deterioration of bridge deck pavement in expressway and prevention measures;
高速公路桥面铺装早期病害原因及防治措施
4)  deck pavement
桥面铺装
1.
Tensile Limit State Analysis in Bridge Deck Pavement Design;
桥面铺装抗拉承载能力极限状态分析
2.
Rational simplified model of finite element analysis for deck pavement of long-span steel bridge;
大跨钢桥桥面铺装有限元分析合理简化模型
3.
Discussion on the deck pavement disease of Qianwei Minjiang river bridge;
犍为岷江大桥桥面铺装病害探讨
5)  bridge pavement
桥面铺装
1.
Analyzing the hazards of asphalt concrete bridge pavement;
沥青砼桥面铺装病害成因分析
2.
Micro-stress failure analysis of bridge pavement of steel fiber;
钢纤维混凝土桥面铺装层的细观应力破坏分析
3.
On the damage formation and countermeasures for Dog River bridge pavement;
浅谈狗河桥面铺装病害成因及整治
6)  deck surfacing
桥面铺装
1.
Further Research on Mechanical Roperties of Long-Span Steel Bridge Deck Surfacing;
大跨径钢桥面铺装力学分析深入研究
2.
Research on Local Repair Scheme of Jiangyin Bridge s Deck Surfacing;
江阴桥桥面铺装局部修复方案研究
3.
The basis theory and hypothesis of finite element method(FEM) computing for steel bridges deck surfacing were proposed.
给出了钢桥面铺装体系有限元计算的基本原理及假设,根据国内大跨径钢桥常用的钢箱梁正交异性桥面板及铺装结构参数,分析了桥面铺装层在行车荷载作用下的受力特性及其与铺装层材料弹性模量的关系,得出最不利荷位,确定了最危险点,并以此处的最大破坏应力作为钢桥面铺装结构设计控制指标,从而控制桥面铺装层的早期破坏。
补充资料:低噪声微波技术
      降低微波接收设备内部噪声的技术。其主要内容是微波低噪声(固态)器件技术和相应的微波电路技术,还涉及低温物理、量子力学等学科。微波波段接收设备的性能主要受其内部噪声的影响,外差式接收机的内部噪声取决于低噪声前端,可用噪声系数F(分贝)、有效噪声温度Te(K)或噪声量度M(分贝)等表征。接收设备的外部噪声取决于天空噪声温度极限,频率范围为0.1~1吉赫的外部噪声主要是银河系噪声;1~10吉赫范围内主要是宇宙背景噪声(3.4K),10吉赫以上则取决于大气噪声(对外空系统取决于宇宙背景噪声和光子噪声)。前端的有效噪声温度应与具体条件下作用于其输入端的外部噪声温度(主要是天线噪声温度Ta)相当。
  
  研究概况  随着半导体技术的发展,半导体器件以其明显的优越性逐步取代了电子管,因此,低噪声技术基本上就是固态低噪声技术。低噪声技术研究起始于40年代用于雷达的点触式半导体二极管混频器。自1958年变容二极管问世后,60年代起参量放大器(参放)得到广泛应用,同期还相继研制成量子放大器和隧道二极管放大器(隧放)。60年代中期,双极型晶体管的使用频率提高到微波波段,制成了L波段低噪声双极型晶体管放大器。1971年制成了微波砷化镓肖特基势垒栅的场效应晶体管,使低噪声技术进入了一个新的阶段。场效应晶体管放大器在高频率和低噪声方面显著优越于双极型晶体管,迅速取代了隧放和行波管放大器,且有逐步取代参放之势。现代在短毫米波段,二极管混频器几乎是唯一实用的低噪声检测手段。自60年代以来,对利用超导的约瑟夫逊结器件制成低噪声混频器和参放不断进行探索研究,已显示其在亚毫米至远红外波段的优越性(见超导性的微波应用)。
  
  应用  低噪声微波技术在通信、雷达、遥感、电子对抗等系统以及射电天文、精密测量等应用中起着重要的作用。在这些方面,除了低噪声指标之外,往往还须满足功率增益、频带宽度、线性工作范围、脉冲功率容量、抗电磁干扰、抗核辐射,以及适应恶劣环境的能力等技术要求。
  
  
  性能与水平  80年代前期的微波低噪声器件性能见图。量子放大器在 1~30吉赫频率有最低有效噪声温度(接近宇宙背景温度),但必须致冷至4K,技术复杂,设备庞大而昂贵,且频带很窄(相对带宽小于 1%)。参放提供常温下最低的有效噪声温度,致冷于20K还可进一步降低,其相对带宽可达20%,但在毫米波段性能和应用因泵源尚难解决而受到限制。在 1吉赫以下,双极型晶体管常用于廉价的放大器,而在1吉赫以上则广泛应用场效应晶体管放大器,它在常温下的噪声性能接近参放,在20K时可与参放媲美。80年代前期,场效应晶体管进入毫米波段(实现60吉赫噪声系数 7.1分贝,相应增益5.5分贝)。场效应晶体管具有稳定性好、线性工作范围大、频带宽(可实现信频程,甚至0~18吉赫的宽带平坦特性)、体积小、致冷简易等优点,但抗烧毁和耐峰值功率的能力比参放约低一个数量级。晶体管放大器适于制作微波集成电路。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条