1) three-phase full-bridge inverter
三相全桥逆变器
1.
Study on one-cycle control of DVR based on three-phase full-bridge inverter;
基于三相全桥逆变器的DVR单周控制策略研究
2) Full bridge phase-shifted inverter
全桥移相逆变器
4) Three-phase bridge type converter
三相桥式逆变器
5) three-phase half-bridge inverter
三相半桥逆变器
1.
Based on three-phase half-bridge inverter,a UPS,which controlled by TMS320LF2812 and drived by HCPL-316J has been designed.
文中设计了一种采用HCPL-316J芯片来驱动用TMS320F2812控制的基于三相半桥逆变器的UPS,分析了半桥逆变器的原理。
6) three-phase full bridge converters
三相全桥变换器
补充资料:全控型逆变电路
由具有自关断能力的全控型器件组成的逆变电路。全控型器件具有自关断能力,其通断均可由控制极控制。
全控型逆变电路具有以下3个特点。
①主电路简化:由于器件具有自关断能力,因而不再需要附加换流电路,这种换流电路对应用于非容性负载的半控型逆变电路是必不可少的,主电路比半控型电路简单。图1是由不同器件组成的电压型三相逆变电路。由逆阻型门极可关断晶闸管 (RBGTO)组成的电路显然比采用逆阻晶闸管的电路简单。
随着大功率器件集成度的提高,由逆导型门极可关断晶闸管(RCGTO)组成的电路(图1c)显然就最为简单,因为RCGTO是将RBGTO及反并联二极管D集成在一个心片的双向开关。
由于主电路的简化,逆变电路的可靠性提高,体积重量和成本都有所下降。
②工作频率提高:图2是各种全控型器件的频率-功耗特性。 由于它们的工作频带在不同范围内高于半控型器件,因而容许逆变电路工作于更高频率,从而电路中的储能元件(如电感、电容等)的数值降低,电路的体积重量和成本降低,同时逆变输出端的谐波含量和噪声也将随工作频率的提高而下降。
③装置容量较低:全控型器件的开关容量尚低于半控型,因而全控型逆变电路的容量在不同程度上低于半控型逆变电路(图3),从而形成在不同场合不同要求下相互补充的局面。但从长远看,随着技术的发展,全控型器件的开关容量将逐步增大,从而逐步取代半控型逆变电路。
全控型逆变电路具有以下3个特点。
①主电路简化:由于器件具有自关断能力,因而不再需要附加换流电路,这种换流电路对应用于非容性负载的半控型逆变电路是必不可少的,主电路比半控型电路简单。图1是由不同器件组成的电压型三相逆变电路。由逆阻型门极可关断晶闸管 (RBGTO)组成的电路显然比采用逆阻晶闸管的电路简单。
随着大功率器件集成度的提高,由逆导型门极可关断晶闸管(RCGTO)组成的电路(图1c)显然就最为简单,因为RCGTO是将RBGTO及反并联二极管D集成在一个心片的双向开关。
由于主电路的简化,逆变电路的可靠性提高,体积重量和成本都有所下降。
②工作频率提高:图2是各种全控型器件的频率-功耗特性。 由于它们的工作频带在不同范围内高于半控型器件,因而容许逆变电路工作于更高频率,从而电路中的储能元件(如电感、电容等)的数值降低,电路的体积重量和成本降低,同时逆变输出端的谐波含量和噪声也将随工作频率的提高而下降。
③装置容量较低:全控型器件的开关容量尚低于半控型,因而全控型逆变电路的容量在不同程度上低于半控型逆变电路(图3),从而形成在不同场合不同要求下相互补充的局面。但从长远看,随着技术的发展,全控型器件的开关容量将逐步增大,从而逐步取代半控型逆变电路。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条