1) Neighborhood analysis
邻域分析
1.
The three dimensional surface texture was divided up into motifs for further analyzing based on the code of neighborhood analysis algorithm and it is also mentioned that the surface texture study is important for the surface function in micromachine,etc.
对当前几种主要的3D-motif评定方法做出简述,分析了连续曲面离散化后的拓扑矛盾的解决方法,并基于邻域分析的算法编制程序,得到分割过程中的几个特征表面,实现对三维表面形貌的motif分割和参数提取,并讨论了表面形貌研究对微机械的摩擦润滑性能的重要性。
2.
To reveal the relationships between the dynamics of settlement and its original status in urbanization,the changes of settlement percentage coverage(SPC)from 1988 to 2006 were studied with a method of neighborhood analysis based on the 1988,1998 and 2006 Landsat TM images of Nanjing.
为揭示城市化过程中聚落动态与原聚落状态的相关性,利用南京地区1988、1998和2006年3期Landsat TM遥感影像,应用邻域分析技术对1988年以来南京地区不同时期聚落占地率的变化及各聚落占地率区间的聚落动态进行了研究。
3.
A method on boundary extraction based on image segmentation and neighborhood analysis is proposed for extracting rice boundary information from remote sensing images.
为了提取卫星遥感影像中的水稻边界信息,本文以 SPOT5卫星遥感影像作为数据源,提出一种基于图像分割和邻域分析的边界提取方法。
2) Spatial Neighboring Analysis
空间邻域分析
3) analytic neighborhood
解析邻域
5) neighbourhood assignment
邻域分派
6) Neighbourhood analysis
邻体分析
补充资料:动态电路复频域分析
动态电路复频域分析
complex frequency-domain analysis of dynamic circuits
dongto}dlonlu卞uP一ny日fenx{动态电路复频域分析(eomplex frequeney-domain analysisof dynamie eireuits)用拉普拉斯变换方法分析动态电路。作为数学工具,拉普拉斯变换是一种积分变换,常用以求线性常系数微分方程和偏微分方程的解。线性非时变集总参数动态电路是用常系数线性常微分方程描述的,线性非时变分布参数电路是由相应的偏微分方程描述的。因而,对于这些电路可借助拉普拉斯变换方法进行分析。 拉普拉斯变换的定义拉普拉斯变换方法简称拉氏变换方法。拉氏变换可分为单边拉氏变换和双边拉氏变换。此处只介绍单边拉氏变换的定义。 设时间t的函数f(t),当t
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条