说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 傅里叶变换透镜
1)  Fourier transform lens
傅里叶变换透镜
1.
High-resolution Fourier transform lens;
高分辨率傅里叶变换透镜
2.
Design of Fourier transform lenses in VHDSS;
体全息存储系统中的傅里叶变换透镜设计
3.
This paper discusses characteristics and functions of Fourier transform lens,and studieson design method of long focal length Fourier transform lens mainly.
随着光学信息处理的不断发展,傅里叶变换透镜的应用也日趋广泛。
2)  lensless Fourier transform holography
无透镜傅里叶变换全息
3)  lensless Fourier transform
无透镜傅里叶变换
1.
Based on the definition of spatial frequency,four parts of the lensless Fourier transform digital hologram coherent field are analyzed in detail.
从空间频率的定义出发,对无透镜傅里叶变换数字全息图相干场表达式中的4个部分进行详细分析,结合采样和再现分离条件,推导出了同时满足这2个条件时,记录物体及参考点源与CCD之间的最小记录距离,指出该最小距离与物体尺寸及CCD像素尺寸有关,并进行了计算机模拟验证。
4)  Fourier transforming lens
傅立叶变换透镜
1.
Based on discussing three diffrent kinds of Fourier transforming lenses, the advantage of using Fourier transforming lens in convergence light is interpreted.
对半导体激光器用于全息记录的特性进行了实验研究 ,指出了半导体激光器的优点及在光学全息领域应用的巨大潜力 ;分析了三种傅立叶变换透镜的共性和差别 ,提出了会聚光中傅立叶变换透镜的优点和光学设计的基本规律 ,实验证明了所设计的实例有良好的结果。
5)  Fourier lens
傅里叶透镜
1.
Correcting method to weak vision from irregular astigmatism with m=3,4,5 high order Fourier lenses;
用m=3,4,5的高阶傅里叶透镜校正不规则散光引起的弱视
2.
-Problems of the focal length measurement of Fourier lens by conventional methods are discussed.
阐述了用传统方法测量傅里叶透镜焦距存在的问题,提出应用频谱分析方法测量傅里叶透镜焦距。
6)  lensless Fourier digital holography
无透镜傅里叶变换数字全息术
1.
The analysis of the properties of recording and reconstructing in lensless Fourier digital holography;
无透镜傅里叶变换数字全息术的特点分析和讨论
补充资料:傅里叶级数与傅里叶积分


傅里叶级数与傅里叶积分
Fourier series and integrals

傅里叶级数与傅里叶积分(F ourierse-ries and integrals) 傅里叶级数与傅里叶积分是研究周期现象的数学工具,它在波(例如光波和声波)的运动、振动力学系统(例如振动的弦)和天体轨道理论中是必不可少的。傅里叶级数及下面将要讨论的有关论题,在其他数学分支中有着重要的应用,其中特别值得提出的是概率论和偏微分方程。这个课题本身所促成的一些学科在纯数学的研究中也占有突出的位置。 单实变量函数f有周斯T,如果对每个t,有f(t+T)一f(t)。具有给定周期T的函数的最简单例子是简谐函数,即形如f(t)=aneosn叫+占。sin明的函数,其中。2二T一’是基频,a。,b。是常数。傅里叶级数的应用,其基本思想是:任意满足相当宽的条件且周期为T的函数f能够表为如下式所示的一些纯简谐函数的叠加: f(‘)一艺(a。eosn。:+。。sinn。‘),(1)或者利用复指数表为如f(‘)一艺c。e一(2)所示更为方便的形式。 假定式(2)逐项积分是合法的,则通过简单的计算表明,式‘一T一‘}f(t)。一‘”“dt(3)(积分区间可以是长为T的任意区间)成立。由此可诱导出傅里叶级数的正式定义。假设f是使得积分睽一f(‘’1“‘(4)存在且为有限的周期T的函数,由式(3)定义的系数{‘)是f的傅里叶系数,而式(2)中的级数是f的傅里叶级数。这些系数唯一地确定函数.即若对每一n有‘二一。,则f本质上是零函数。此外,还可以证明,许多对于函数的形式运算,施加到级数逐项进行仍是正确的。由此立即引出两个重要的问题。设s、(,)一名e,了一(5)是f的傅里叶级数的第N个部分和,第一个问题是当N趋于co时:斌t)是否收敛于f(t)?第二个问题是给定了一个序列(c。},它是否为某一函数的傅里叶系数序列? 一个连续函数的傅里叶级数不一定处处收敛。如果t0是一给定点,sN(t。)趋于f(t。)的收敛性依赖于f(t)在t。的邻域内关于t的性态。然而,如果我们取平均的部分和a、一(N+1)一,习s,,(6)则对于连续的f,将一致地有如“f。仅仅知道傅里叶级数的普通收敛性,在应用上并不重要。由于计算上的目的.必须知道一些有关收敛速度的知识。下面的论述这个问题的定理的例子:假设}df/dt}(M处处成立,则有},(,)一(‘),、六M(N+1)一。 黎曼一勒贝格引理断言,若{c。}是一个可积函数的傅里叶系数序列,则当n~士二~时伽~。。但逆命题不真,即并非系数趋于零的所有三角级数艺二‘““(7)都是傅里叶级数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条