1) apodization function
切趾函数
1.
As a new and challenging type of imaging spectrometer,its successful launch implies IFTS will play an important role in hyperspectral remote sensing applications,in which apodization function is an important part of interferogram pre-processing,and it has a powerful effect on the accuracy of reconstructed spectra.
在干涉光谱成像过程中,切趾函数处理是干涉成像光谱仪光谱复原过程中的一个重要环节,对复原光谱的精度有着极其重要的影响。
2.
The performance of linearly chirped gratings is optimized by designing and changing the parameters of apodization functions,aiming at some issues such as the unexpectedly fluctuating group delay ripple(GDR) in chirped fiber Bragg grating(CFBG) which are applied to achieving all-optical dispersion compensation in 40 Gb/s optical communications.
针对制作可用于40 Gb/s全光色散补偿的宽带线性啁啾光栅时出现带内群时延纹波波动较大等问题,提出了一种通过设计和改变切趾函数的参量来优化线性啁啾光栅的新方法。
2) Aperdization
切趾函数
1.
A Study on the Optimal Aperdization Function for a Fiber Bragg Grating;
光纤光栅最佳切趾函数的研究
3) apodisation factor
切趾参数
4) apodization sharpness parameter
切趾强度参数
1.
A apodization sharpness parameter is defined.
当切趾强度参数约为0。
2.
The paper is quite different from the before researches that it defined an apodization sharpness parameter to analysis the spectral response for dispersion compensation instead of only discussing the impact of the apodization function on spectral performance.
本文通过定义切趾强度参数的概念,从切趾强弱的角度研究切趾线性啁啾色散补偿光纤光栅的光谱和色散补偿特性,而不是仅从切趾包络函数本身的特性进行讨论。
5) Apodization
切趾
1.
Good performance of chirped fiber Bragg gratings obtained by asymmetrically one-side exposure apodization;
非对称单侧曝光切趾使啁啾光纤光栅获得优化性能
2.
cosine-shaped and elliptical diaphragms are adopted to achieve the apodization of the instrumental function curve,and their respective theoretical instrumental resolutions are calculated.
在采用面光源的单光栅等效双光栅型干涉选择调幅光谱仪中,采用菱形、梯形、余弦形、椭圆等特殊形状的光阑,来完成对其仪器函数的切趾,并求出相应的理论分辨本领。
3.
Sectional apodization is used on chirped phase-shifted grating to obtain ap.
采用分段切趾的方法获得满足光通信要求的滤波特性,利用传输矩阵法分析了切趾前后透射峰特性的变化,结果表明:切趾改善了滤波器的幅度和相位响应,依据滤波器的设计要求选取不同的切趾函数以及切趾比例;切趾还大大减弱了透射峰波长和深度对相移量的敏感度,适当切趾后相移量的影响可以忽略。
6) slice function
切片函数
补充资料:小趾次趾
小趾次趾 小趾次趾 人体部位名。即足第四趾。又称次小趾。《灵枢·经筋》:“足少阳之筋,起于小趾次趾,上结外踝。”
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条