1) asymptotical stability with zero solution
零解渐近稳定
1.
By means of generalized Lyapunov function and linear matrix inequality(LMI),the asymptotical stability with zero solution is studied for the system,and a sufficient condition is given such that the system is asymptotically stable with zero solution and also a H∞ norm constraint.
针对非线性离散广义系统研究了状态反馈H∞控制器的设计问题,利用广义Lyapunov函数和线性矩阵不等式(LMI),首先对系统的零解渐近稳定问题进行了研究,并在此基础上给出了系统的零解渐近稳定且具有H∞范数约束的充分条件,之后设计了状态反馈H∞控制器,使闭环系统具有同样的性能,最后给出了数值算例说明本文结论的有效性和可行性。
2) zero solution E-asymptotical stability
零解E-渐近稳定
3) asymptotically stable solution
渐近稳定解
4) uniformly asymptotic stability of solution
解一致渐近稳定
5) asymptotically stable
渐近稳定
1.
Then,the Lyapunov function,linear matrix inequality(LMI) methods were used to derive a sufficient condition,which could ensure that the NCS was asymptotically stable.
然后采用李亚普诺夫函数、线性矩阵不等式的方法推导出了该网络化控制系统渐近稳定的充分条件。
2.
The Lyapunov function,linear matrix inequality(LMI) methods are used to derive a sufficient condition,which can guarantee that the NCS is asymptotically stable.
针对一类具有等式约束的网络控制系统控制器、采样周期以及最大允许延迟时间的设计问题,采用李亚普诺夫函数、线性矩阵不等式的方法,推导出了该网络控制系统渐近稳定的充分条件。
3.
The local optimal controller gain which ensures that network control system is asymptotically stable and that there exists maximum-variable interval was designed,and a theorem for the stability of state feedback network control systems was .
假定延时恒定且小于1个采样周期,采用Lyapunov函数、线性矩阵不等式(LMI)以及区间矩阵的概念,对状态反馈回路网络化的控制系统控制器增益进行设计,以寻求某个局部最优控制器增益,使网络化控制系统渐近稳定并同时使该控制器增益可变区间达到最大。
6) asymptotic stability
渐近稳定
1.
Global asymptotic stability of a class of third-order nonlinear delay system;
一类三阶非线性时滞系统的全局渐近稳定性
2.
The asymptotic stability and stabilization for singular large-scale systems;
广义大系统的渐近稳定与镇定
3.
H_∞ asymptotic stability for a classof uncertain time-delay switched systems;
一类不确定时滞切换系统的H_∞渐近稳定性
补充资料:渐近稳定解
渐近稳定解
asymptotically - stable solution
渐近稳定解[asymp咖回ly一stable sduti佣;~"ror卜,ee姗ycro曲,栅e peoe“。el 一个微分方程组的解,它在月刃乃旧oB意义下是稳定的(见加.lyl舰旧稳定性(Lyapunov stability)),并且吸引具有足够接近的初始值的一切其他解.例如,考虑方程组 卒二f(r.,、‘。 a了J、右边的函数f(:,考)对于一切:):,考任R”有定义,并使得方程组(*)的解存在而且是唯一的.这时,方程组(*)的解 x(;,乱),x(:,乱)=老。是渐近稳定解,如果这个解同一切与其足够接近的解 x(:,句,}若一蜀}
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条