1) adapted stochastic sequence
随机适应序列
1.
Strong convergence theorem for arbitrary adapted stochastic sequence;
关于一类随机适应序列的强收敛定理
2.
In this paper,we establish the strong limit theorem for an arbitrary adapted stochastic sequence.
设(Ω,F,P)为概率空间,{Xn,Fn,n 0}为定义在上面的随机适应序列。
2) stochastic adapted sequence
随机适应序列
1.
The strong limit qualities on partial sums of stochastic adapted sequences are studied by Doob Martingale convergence theorem.
利用Doob鞅收敛定理,研究随机适应序列部分和的强极限性质,得到了一类强极限定理和强大数定律。
3) adapted sequences with Banach space values
B值适应随机序列
1.
Discuss the strong convergence of series on the adapted sequences with Banach space values by stop time and the convergence theorem for B-value martingale.
利用B值鞅收敛定理和停时方法,讨论B值适应随机序列的级数收敛性,得到了一类相应的强极限定理,使得已有的若干收敛定理成为所得定理的特例。
4) integrable and adapted random variables
可积适应随机变量序列
5) partial sums of Adapted stochastic sequence
适应随机变量序列的部分和
补充资料:随机序列
随机序列
random sequence
随机序列[拍目佣1,月1.耽;c卿‘H明noc朋助B眼-剐Oc“1,离散时间随机过程(stoCb溺康pnx尤SSin曲crete ti叮℃),时间序列(tl叱s~) 定义在所有整数集t=O,士1,士2,…,或正整数集t=1,2,…,上的随机函数.A.M.凡刀。M撰【补注】参考文献见随机过程(s杖尤h姐tic Pro渊)及时间序列(tinrsen。).刘秀芳译陈培德校
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条