1) flexural-torsional buckling
弯扭屈曲
1.
Wagner effect in flexural-torsional buckling of open-profile thin-walled columns;
开口薄壁柱弯扭屈曲时的Wagner效应问题研究
2.
The flexural-torsional buckling of thin-wall open compression members with twin axes eccentrically connecting with multiple elastic supports is studied.
研究了有双轴对称截面开口薄壁压杆与多个弹性支承偏心连接时的弯扭屈曲,把作用在开口薄壁压杆上的弹性支承去掉,代之以相应的未知外力和未知扭矩,采用Laplace变换推导出了开口薄壁压杆弯扭屈曲的位移函数,求得了其弯扭屈曲的特征方程。
3.
Based on the theory of nonlinear finite element of plate and shell,a finite element method of elasto-plastic flexural-torsional buckling of steel members under cyclic loading was presented,and a nonlinear analysis program was complied.
根据板壳非线性有限元基本理论 ,提出了压弯钢构件在循环荷载作用下弹塑性弯扭屈曲分析的有限单元法 ,并编制了计算程序 ,通过将计算结果和其他分析比较 ,对本文的理论进行了验证。
2) flexural-torsional buckling
弯曲扭转屈曲
1.
This paper represents the analytical process and manual calculation method of the flexural-torsional buckling behavior of thin-walled structure with monosymmetric cross-section in fire condition.
基于著名的Rankine公式研究了火灾情况下单轴对称薄壁热轧槽钢柱弯曲扭转屈曲的计算特性,提出了一种用于计算薄壁槽钢柱抗火性能的方法。
3) flexural-torsional buckling load
弯扭屈曲荷载
1.
Based on the total potential energy of elastic curved beams by considering the geometrical nonlinearity, the theoretic solution for the flexural-torsional buckling load of fixed-end circular arches subjected to uniform compression and bending is deduced with the Retz method, taking the effects of warping rigidity into account.
在给出的考虑几何非线性情况下的弹性曲梁总势能的基础上,采用里兹法导出了固支圆弧拱在均匀受压和均匀受弯作用下的弯扭屈曲荷载的理论解,推导中考虑了翘曲刚度的影响。
4) torsional-flexural buckling
弯扭失稳(屈曲)
5) flexural torsional buckling
弯扭耦合屈曲
1.
An energy method is developed for analyzing the flexural torsional buckling behavior of flanged stiffeners subjected to axial force.
用能量法分析了面内受压的薄壁加强筋弯扭耦合屈曲,研究了柔性腹板加强筋和刚性腹板加强筋以及不同结构形式加强筋(对称型和不对称型加强筋)弯扭耦合屈曲特性,并考虑了截面变形和板后屈曲的影响。
6) lateral-torsional buckling
侧向弯扭屈曲
1.
The calculation for lateral-torsional buckling(LTB) of steel I-beams in fire conditions;
火灾下钢梁的侧向弯扭屈曲(LTB)计算
补充资料:弯扭系数
分子式:
CAS号:
性质:又称曲折因子。气体、蒸气分子对薄膜的透过是单分子扩散过程。其大体过程是溶解于固体薄膜中,向低浓度处扩散,在薄膜另一侧蒸发。透过能力的大小由这三个过程中的因素决定,在扩散阶段,就和薄膜的分子结构、极性、气体的种类等等有关。弯扭系数就是给出这些因素的综合的数字式评价。它的物理意义是分子穿经薄膜必须的运动距离除以薄膜厚度所得之商值。
CAS号:
性质:又称曲折因子。气体、蒸气分子对薄膜的透过是单分子扩散过程。其大体过程是溶解于固体薄膜中,向低浓度处扩散,在薄膜另一侧蒸发。透过能力的大小由这三个过程中的因素决定,在扩散阶段,就和薄膜的分子结构、极性、气体的种类等等有关。弯扭系数就是给出这些因素的综合的数字式评价。它的物理意义是分子穿经薄膜必须的运动距离除以薄膜厚度所得之商值。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条