说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非线性序集
1)  nonlinear ordering set
非线性序集
2)  Linearly ordered set
线性序集
3)  simply ordered set
线性有序集
4)  Nonlinear sequences
非线性序列
5)  non linear order
非线性秩序
6)  non linear time series
非线性时序
1.
The internal and external state of non linear time series prediction to economic system is reviewed and modern economic growth models and their shortcomings in the prediction are analyzed in the paper.
分析了经济系统非线性时序预测的国内外研究现状、现代经济增长模型在预测中存在的不足之处 ,阐述了经济增长系统的非线性、动态反馈性、开放性等特征 ,并应用非线性时序理论 ,研究了经济增长的非线性时序预测问题 ,给出了经济增长非线性时序预测的方
补充资料:良序集


良序集
well-ordered set

  良序集【wen一咖ered set;即。皿e担op皿朋,e“noeM“o-翔cTOSO] 具有二元关系簇并且满足下列条件的一个集合尸: l)对任意x,夕6p,或x(y,或y(石 2)如果x簇夕并且夕簇x,那么x=夕: 3)如果x(y并且夕蕊:,那么x簇石 4)在任意非空子集X C=P中,存在一个元素“,使得对所有x‘x,a簇x. 于是,良序集是满足极小条件的全序集(totallyOrdered set). 良序集概念是由G.Cantor(【l」)提出的.自然数集对于自然顺序是良序集的一个实例.另一方面,实数区间【O,11对于自然顺序不是一个良序集.良序集的任一子集是良序的.有限个良序集的Descartes积对于字典序(le廊。graphic older)是良序的.一个全序集是良序的,当且仅当它不包含反同构于自然数集的子集(见偏序集的反同构(咖一isomorphismofpartia】】y oldered set)). 一个良序集尸的最小元素用零(符号0)表示.对于任意元素a‘尸,集合 [o,a)={x:X Ep,x极限元(Umit eler加nt). 比较定理(comparison此。~).对任意两个良序集p,和p:有且仅有下列情形之一成立:a)尸1同构于pZ;b)pl同构于p:的一个初始段;或者c)尸2同构于尸,的一个初始段. 如果选择公理(画om of choice)包含在集合论的公理中,那么可以证明,对任意非空集合可以赋予它一个序关系,使其成为一良序集(即任一非空集合是能够良序的).这个定理(称为Zerlldo定理(Zer-n祀10 lheorelll))事实上等价于选择公理.Zern犯10定理和比较定理构成了集合的基数之间的比较的基础.良序集的序型称为序数(ordinaln切mber)(见序型(order type:序数(ordin川nUmber)).【补注】在上面的定义中,条件3)(序关系的传递性)事实上是多余的:它从子集{x,y,艺}的最小元素的存在性得到. 有时一个良序集称为全良序集(totally weU一order-ed set),以反映次序关系是全序(total ordering)或线性序(linear order雌).见全序集(totally orderedset).
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条