说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 凸规划
1)  convex programming
凸规划
1.
Interior point algorithm of convex programming with simple constraints;
简单约束凸规划的一种内点算法
2.
Convergence of maxnnum entropy method for solving constrained convex programming;
一般约束凸规划极大熵方法的收敛性
2)  Convex program
凸规划
1.
In this paper, we discuss a class of nonsmooth convex program , give the relations between the existence of the Lagrange multiplier and the subdifferentiability of the value functio; also , present the sufficient con- ditions for the exiatence of the multiplier.
本文讨论了一类非光滑凸规划问题,给出了Lagrange乘子的存在性与值函数的次可微性的关系和乘子存在的充分条件。
3)  convex optimization
凸规划
4)  E-convex programming
E-凸规划
1.
And a counter example about a result of E-convex programming is given.
给出了一类广义的凸集和凸函数——E-凸集和E-凸函数的一个性质;并给出了关于E-凸规划命题的一个反例。
5)  B-vex programming
B-凸规划
1.
The definition of B-vex programming is proposed and its basic properties are obtained.
通过给出B-凸规划的定义并研究它的基本性质,得到B-凸规划的最优性条件。
6)  Nonconvex programming
非凸规划
1.
A new homotopy method,called boundary moving combined homotopy method,for solving nonconvex programming is given,and the existence and convergence of the homotopy path is proved under some weak conditions.
本文给出了一个新的求解非凸规划问题的同伦方法,称为动边界同伦方程,并在较弱的条件下,证明了同伦路径的存在性和大范围收敛性。
2.
To the nonconvex programming, the article makes it local convexification by introducing a simple penalty function into the obje ctive function, and solves it like solving convex programming.
针对非凸规划 ,本文引进一简单的惩罚函数将其局部凸化 ,然后用凸规划的方法求解。
3.
The present paper deals with the association of the solution and lagrange multiplier of nonconvex programming with quadratic constraint, and it is shown by means of some examples that the association is hardly programmed for general nonconvex programming problems.
讨论二次约束非凸规划问题的解与Lagrange乘子的若干关系,并举例说明对于一般凸规划问题,这种关系不易刻划清楚。
补充资料:凸规划


凸规划
convex programming

凸规划l阴作xP找嗯侧”mi鳍;脚仍哥脚砚祀娜“和洲M娜肚吐a“毗{ 数学规划(rnathemati以j programming)的一个分支,它研究求解由等式和不等式组确定的凸集上的凸函数的极小化问题的理论和方法存在相当复杂的凸规划理论,求解此领域中的问题的各种各样的方法也已得到发展,对于许多凸规划的迭代法,其收敛性的先验估宝f已经建立.二次规划(quadratic Pr‘〕gramming)是凸规划的分支‘之一
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条