1) positive convergent series
正项收敛级数
2) convergence and dispersion of positive series
正项级数敛散性
1.
As to convergence and dispersion of positive series, there are some different criteria, by which some new ones can be brought about.
正项级数敛散性的判别法较多,而且从这些判别法中又可延伸出一些新的判别法。
3) regularly convergent series
正则收敛级数
4) convergent series
收敛级数
5) convergence of series
级数收敛
1.
This paper is focused on the relationship between the convergence of series and the limitation of series.
通过实例从正反两方面探讨了数项级数收敛与数列极限的相互关系,在此基础上给出了数列收敛与级数收敛判定准则的一个充要条件。
6) series convergence
级数收敛
1.
One succinct proof about the modulus of S—family function and its derived function having upper bound is given by Bieberbach conjecture and the definition of series convergence.
运用Bieberbach猜想及级数收敛的定义获得了S族函数及其导函数的模有上界的简洁证明。
补充资料:二项级数
二项级数
binomial series
二项级数t场..川日series;6.lloM.a肠.‘亩p.川 形式为 aor、r_、r_、 ng0圈广一,十日·+日护+…,的幂级数,其中”是整数,“是任意固定数(一般地说,是复数),:“x+iy是复变量,而 「al t”J是二项式系数(binomial姗ffidents).对于整数“=m)0,二项级数化为含m+1项的有限和 fl+z产=l+。:+型迪二且:2+…+z,. 2!它称为Newt砚xl二项式(Newton bl了。()rn一al,.对于其他,值,‘场{:,<1时.帅级数绝对收敛,‘,{:一>l时二项级数发散.在单位圆}:二l的边界点上.几项级数的性状如下所述:1)如果R。,>0.则在一切点士二项级数绝对收敛,2)如粱Re义一1.则在一切饭上发散;3)如果一1
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条