1) self-organizing feature map neural network
自组织特征映射神经网络
1.
The sample sore using neural network is a new study problem,this paper classifies zoology city by using self-organizing feature map neural network.
神经网络用于样本分类是一个新的研究课题,本文利用自组织特征映射神经网络,对生态城市进行分类。
2.
SOM network(self-organizing feature map neural network) learning with no instructors which has self-adaptive,self-learning features.
SOM网络(自组织特征映射神经网络)模拟大脑神经系统,具有自适应、自学习与联想功能,是一种无导师学习网络,最大优点是能够保持原始数据的拓扑结构,在数据分类、知识获取、过程监控和故障识别等领域中应用广泛。
2) SOFMNN
自组织特征映射神经网络
1.
The inhomogeneous-HMM is studied, and the Self-Organizing Feature Mapping neural network-SOFMNN and an improved inhomogeneous-HMM are combined to train the antinoise HMM.
研究了一种非齐次隐马尔可夫模型(Inhomogeneous Hidden Markov Model),然后将自组织特征映射神经网络与这种非齐次隐马尔可夫模型相结合,训练出抗噪声的HMM模型,并应用该混合模型进行语音识别。
2.
Speech recognition system based on CDHMM/SOFMNN in noisy environment;
针对噪声背景下传统语音识别系统识别率较低的问题,提出了一种将自组织特征映射神经网络(SOFMNN)与隐马尔可夫模型(HMM)相结合的方法,训练出适应噪声的混合模型。
4) self-organizing feature mapping neural network
自组织特征映射神经网络
1.
A hybrid model method was developed combining self-organizing feature mapping neural network(SOFMNN) and semi-continuous hidden markov model(SCHMM) to train noise by adapting HMM.
文中提出将自组织特征映射神经网络与半连续隐马尔可夫模型相结合,训练出适应噪声的隐马尔可夫模型的新方法。
5) self-organizing feature map(SOFM)
自组织特征映射神经网络(SOFM)
6) one dimensional self organizing feature map neural network
一维自组织特征映射神经网络
1.
For some images from the same scene with different kinds of noise,this paper presents a new kind of image data fusion algorithm based on the one dimensional self organizing feature map neural network.
为了融合来自同一景物的多幅带有不同噪声的图像 ,本文提出了一种基于一维自组织特征映射神经网络的图像融合算法 ,利用等灰度图法来确定自组织映射神经网络的聚类数 ,并用一维的像素特征量直接进行二维图像信号处理 。
补充资料:Hopfield神经网络模型
Hopfield神经网络模型
Hopfield neural network model
收敛于稳定状态或Han加Ing距离小于2的极限环。 上述结论保证了神经网络并行计算的收敛性。 连续氏pfield神经网络中,各个神经元状态取值是连续的,由于离散H6pfield神经网络中的神经元与生物神经元的主要差异是:①生物神经元的I/O关系是连续的;②生物神经元由于存在时延,因此其动力学行为必须由非线性微分方程来描述。为此,在1984年J.J.H叩fi酗提出了连续氏pfield神经网络,它可用图1所示的电路实现,其动态方程┌───┐│·T叮 │└───┘图1连续F砧pfield神经网络 (a)Sigmoid非线性;(b)神经元模型可由下述微分方程式描述: 、,产 门J /r、l、1.。瓮一客、一佘Ii认=f(u£)£=l,2,…,n式中f(·)为连续可微的Sign101d函数;T,j=兀、i,j=1,2,“’,n几=0]=i1~.吞~·‘八文一Q*+,戮T,j‘一‘,2,”一”连续时间氏pfield神经网络式的计算能量函数定义为:一告客客几从砚 石l「Vi_1,、,合,,, +乞古!‘厂‘(x)dx一乙I,从(4) ’月R‘Jo“‘、一’一月一,” 对于式(3),若f一‘为单调增且连续,C>0,T,j=几(i,j=1,2,一,n),则沿系统的运动轨道有dE一。-丁丁足之Uat当且仅当贷一。时 箭一。式(3)的稳定平衡点就是能量函数E〔式(4)」的极小点,反之亦然。同时,连续氏pfield神经网络式(3)以大规模非线性连续时间并行方式处理信息。网络的稳定平衡点对应于其计算能量函数E的极小点,网络的计算时间就是它到达稳定的时间,网络的计算在系统趋于稳态的过程中也就完成了。这也是式(3)用于神经计算及联想记忆的基本原理,也即神经计算机的基本原理。HoPfield shenling wangluo moxingHopfield神经网络模型(Hopfieldne,Ine幻即0比m侧触l)一种单层全反馈的人工神经网络模型(后称之为氏p玉idd模型),它对推动人工神经网络研究的复苏起了很重要的作用。 且,lield对人工神经网络研究的贡献主要有: (l)把有反馈的神经网络看作一个非线性动力系统,提出了系统的全局Lyap阴lov函数(或称能量函数)的概念,用于系统稳定性的分析; (2)利用上述分析方法解决人工智能中的组合优化问题,如15护;(3)给出了利用模拟电子线路实现的连续Hopfidd网络的电路模型,为进一步研究神经计算机创造了条件。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条