1) Wu-elimination method
吴文俊消元法
1.
In this paper,many traveling wave solutions to NLS equations were obtained by using hyperbola function method and Wu-elimination method,which include new traveling wave solutions and rational traveling wave solutions.
借助计算机代数系统Mathematica,利用双函数法和吴文俊消元法,获得NLS方程的多组新的显式行波解,包括孤波解和周期解。
2.
In this paper,with the aid of computer algebra system mothematica,many traveling wave solution to Schrdinger equation are obtained by using hyperbola function method and Wu-elimination method,including new traveling wave solutions and rational traveling wave solutions.
借助计算机代数系统Mathematica,利用双函数法和吴文俊消元法,获得了Schr dinger方程的多组新的显式行波解,包括孤波解和周期解。
3.
With the help of Mathematica, new explicit and exact traveling solutions for the generalized (2+1)-dimensional Nizhnik-Novikov-Vesselov equation are obtained by using bifunction method and Wu-elimination method.
借助计算机代数系统Mathem atica,利用双函数法和吴文俊消元法,获得广义(2+1)维Nizhink-Novikov-Vesselov(GNNV)方程的多组新的显式精确行波解,包括孤波解和周期性解。
2) Wu elimination method
吴文俊消元法
1.
With the help of the mathematic software Maple, one of the examples in Bai’s article is solved by using the improved method and the Wu elimination method.
借助数学软件Maple ,用改进后的方法和吴文俊消元法 ,求解BaiCL文中的一个例子 ,获得了包含Bai文结果在内的更为丰富、精确的行波解 。
2.
With the help of Mathematica, new explicit and exact traveling solutions for Boussinesq equation are obtained by using bifunction method and Wu elimination method, including new solitary wave solutions and periodic solutions, and the bifunction method is further complemented.
借助计算机代数系统 Mathematica,利用双函数法和吴文俊消元法 ,获得 Boussinesq方程的多组新的显式精确行波解 ,包括孤波解和周期性解 ,同时进一步补充和完善了双函数
3) Wentsun elimination method
吴文俊消去法
4) Wu Elimination Method
吴消元法
1.
A suitable transformation(trigonometric function method)is found to change nonlinear Boussinesq differential equations into nonlinear algebra equations,which are solved by Wu elimination method and therewith the general soliton solutions of Boussinesq differential equations are obtained.
用吴消元法求解该非线性代数方程组,从而获得一般形式Boussinesq微分方程的广义孤子解。
2.
In this paper, the main work and conclusions are as follows:(1) Introduction of Wu Elimination Method.
本文的主要工作和成果如下:(1)介绍吴消元法的基本内容。
3.
Wu elimination method is applied to solve the analytical solutions of power flow equations without extraneous roots or missing roots.
应用吴消元法求解潮流方程的全部解,做到不增不漏。
6) Wu's method of elimination
吴消元法
1.
The algebra shape of Wu′s method of elimination;
吴消元法的初等代数形式
补充资料:吴元济(783~817)
唐宪宗时重要叛藩的首领。淮西节度使吴少阳的长子。沧州清池(今河北沧州东南)人。
淮西节度使治蔡州(今河南汝南),蔡州西南出襄州(今湖北襄樊襄阳),东北出汴州(今河南开封),可以截断汉水及运河交通,西北出即逼唐朝东都洛阳,地位十分重要。从唐代宗、唐德宗以来,先后由李希烈、吴少诚、吴少阳据有其地。淮西镇勾结河北诸镇,成为唐朝心腹大患。宪宗元和九年(814)闰六月,吴少阳死,元济匿不发丧,伪造少阳表,称病,请以元济为留后。朝廷不许。元济于是遣兵焚舞阳(今河南舞阳西北)、叶县(今河南叶县南),攻掠鲁山(今属河南)、襄城(今属河南)、阳翟(今河南禹县)。宪宗在主战派宰相李吉甫、武元衡及御史中丞裴度等支持下,发兵讨伐。当时河北藩镇中,成德(今河北正定)的王承宗、淄青(今山东益都)的李师道都暗中与吴元济勾结,出面为之请赦。因朝廷不许,李师道便遣人伪装盗贼,焚烧河阴(在今河南荥阳东北)粮仓,企图破坏唐朝的军需供应;又派刺客入京刺杀武元衡,砍伤裴度(时李吉甫已死),企图打击主战派。但宪宗不为动摇,以裴度继武元衡为宰相,主持讨伐事宜。两方相持数年。
元和十二年夏,裴度自请赴前线督师,加强了军事的统一领导。而淮西地区连年交战,粮食缺乏,军心动摇,战将被俘降唐者,多为唐军效力。同年十月,唐邓节度使李愬在降将李祐导引下,于雪夜奇袭蔡州成功,破城俘元济。十一月,吴元济被斩于长安。淮西的平定是唐中央政府的一次大胜利。至此,长期割据河北的藩镇也表示愿意服从中央,使唐朝统一的局面暂时有所加强。
淮西节度使治蔡州(今河南汝南),蔡州西南出襄州(今湖北襄樊襄阳),东北出汴州(今河南开封),可以截断汉水及运河交通,西北出即逼唐朝东都洛阳,地位十分重要。从唐代宗、唐德宗以来,先后由李希烈、吴少诚、吴少阳据有其地。淮西镇勾结河北诸镇,成为唐朝心腹大患。宪宗元和九年(814)闰六月,吴少阳死,元济匿不发丧,伪造少阳表,称病,请以元济为留后。朝廷不许。元济于是遣兵焚舞阳(今河南舞阳西北)、叶县(今河南叶县南),攻掠鲁山(今属河南)、襄城(今属河南)、阳翟(今河南禹县)。宪宗在主战派宰相李吉甫、武元衡及御史中丞裴度等支持下,发兵讨伐。当时河北藩镇中,成德(今河北正定)的王承宗、淄青(今山东益都)的李师道都暗中与吴元济勾结,出面为之请赦。因朝廷不许,李师道便遣人伪装盗贼,焚烧河阴(在今河南荥阳东北)粮仓,企图破坏唐朝的军需供应;又派刺客入京刺杀武元衡,砍伤裴度(时李吉甫已死),企图打击主战派。但宪宗不为动摇,以裴度继武元衡为宰相,主持讨伐事宜。两方相持数年。
元和十二年夏,裴度自请赴前线督师,加强了军事的统一领导。而淮西地区连年交战,粮食缺乏,军心动摇,战将被俘降唐者,多为唐军效力。同年十月,唐邓节度使李愬在降将李祐导引下,于雪夜奇袭蔡州成功,破城俘元济。十一月,吴元济被斩于长安。淮西的平定是唐中央政府的一次大胜利。至此,长期割据河北的藩镇也表示愿意服从中央,使唐朝统一的局面暂时有所加强。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条