1) Joule heating
焦耳加热
1.
Changes of thermospheric mass density and their relations with Joule heating and ring current index during Nov. 2003 superstorm—— CHAMP Observations;
2003年11月超强磁暴热层大气密度扰动及其与焦耳加热和环电流指数的关系——CHAMP卫星观测
2.
The heat transfer of the natural convection of horizontal micro-wire with different outer diameters is experimentally investigated by using the Joule heating.
采用焦耳加热法对不同尺寸的水平微细铜丝在水中加热,并将实验得到的努谢尔特数Nu与常规尺寸下经典准则关系式的计算值比较。
3.
Using the Joule heating,the wire is heated and its average temperature can be obtained exactly according to the relations between the wire resistance and the temperature.
实验中对细丝采用焦耳加热。
2) Joule heating
焦耳电热效应加热
3) Joule-heated ceramic melter
焦耳加热陶瓷熔融炉
4) Joule heat
焦耳热
1.
Joule heating effect in liquid metal Hartmann flow;
液态金属哈特曼流的焦耳热效应
2.
Analysis and simulation of joule heat effect of interconnect via in integrate circuit;
集成电路互连铝通孔焦耳热效应的分析与模拟仿真
3.
The influences of different coupling widths of the heating subassembly on the induction magnetic field,induction current and Joule heat in the large size SiC growth system have been investigated systematically.
本文采用有限元分析方法系统地研究了大尺寸S iC晶体PVT法生长装置中的加热组件不同的耦合间隙对生长系统中的感应磁场、感生电流和焦耳热的影响;分析比较了取不同的耦合间隙时系统达到热平衡状态所需时间的不同。
5) Joule heating
焦耳热
1.
A theoretical model of electric field distribution and Joule heating effect on particle flow i.
本文建立了介电泳颗粒流动中的电场分布和焦耳热效应的理论模型。
2.
Considering the effect of current profile, a simple model was adopted to!calculate the rail and armature joule heating of a small-scale electromagnetic rail gun after a single shot.
考虑了脉冲波形的影响,采用简化模型计算了自行设计的一种小型电磁轨道炮在单次发射后金属导轨和电枢中的焦耳热。
3.
With a current density of 104A/cm2 and the Joule heating effect,the temperature of solder joints increased from 25 to 50℃,and the Bi-rich phases grew bigger d.
实验中采用的电流密度为104A/cm2,同时焦耳热会引发焊点温度从25升高至49℃,富铋相在此温度下会发生明显粗化,除此之外,铋原子会首先到达正极界面处并形成坚硬的阻挡层,使得锡原子的定向运动受到阻碍,最终,富锡相会凸起,其与负极界面间会有凹谷形成。
6) Joule heat
焦耳热<冶>
补充资料:焦耳
焦耳(1818~1889) Joule,James Prescott 英国物理学家。1818年12月24日生于曼彻斯特附近的索尔福德,1889年10月11日卒于塞尔。
年轻时曾向英国化学家J.道尔顿学习,并在他的鼓励下决心从事科学研究。起初研究电学和磁学。1837年发表的有关论文引起人们的注意。1840年12月在英国皇家学会上宣读关于电流生热的论文,提出电流通过导体产生热量的定律 ;不久由于H.F.E.楞次也独立地发现了同样的定律,因而统被称为焦耳楞次定律。 焦耳的重要贡献是钻研并测量了热和机械功之间的当量关系棗热功当量。有关的第一篇论文《关于电磁的热效应和热的功值》,发表于1843年英国《哲学杂志》第23卷第3辑。他用磁电机发出的电流通入导体以产生热量,比较在通路时转动磁电机所作的功,在断路时所作的功之差,与所得的热量来决定热功当量的数值。后来又将压缩某定量空气所需要的功与压缩时产生的热量作比较;还根据水通过细管流动放出热量来确定热功当量。不久,改用转动水轮推动流体摩擦测定热功当量的新方法。不仅用水,还用鲸脑油实验 。尽管所用方法、设备、材料各不相同,结果都相差不远。并且随着实验精度的提高,趋近于一定的数值。最后将多年实验结果写成论文发表在英国皇家学会《哲学学报》1850年第140卷上。其中阐明:① 不论固体和液体,摩擦所产生的热量,总是与所耗的功的大小成比例。②要产生使1磅水(在真空中称量,其温度在50~60华氏度之间)增加1华氏度的热量,需要耗用772磅重物下降1英尺(0.3048米)的机械功。近40年的研究工作,焦耳为热运动与其他运动的相互转化,运动守恒等问题,提供了无可置疑的证据,成为能量守恒定律的发现者之一。 1845年,焦耳完成了气体自由膨胀时降温的实验,1852年起与W.汤姆孙(即开尔文)合作,改进实验,并于1865年发表论文。后称之为焦耳-汤姆孙效应,广泛应用于低温和气体液化方面。他对蒸汽机的发展作了不少有价值的工作,还第一次计算了有关气体分子的速度。 1850年,焦耳被选为英国皇家学会会员。为了纪念他对科学发展的功绩,命名能量和功的实用单位为“焦耳”,为现行国际单位制(SI)所沿用。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条