说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 边坡与坝基
1)  slope and dam foundation
边坡与坝基
1.
The vector analysis method(VAM) of slope and dam foundation stability is put forward on the basis of vector method safety factor.
滑动是一个矢量概念,基于矢量法安全系数的边坡与坝基抗滑稳定的矢量分析法,以边坡与坝基的整体抗滑稳定性为研究对象,根据边坡与坝基的整体滑动趋势方向确定安全系数的计算方向θ,在方向θ上由抗滑力与滑动力的矢量特征定义矢量法安全系数F(θ),以F(θ)进行边坡与坝基的抗滑稳定分析。
2.
Stability analysis of slope and dam foundation against sliding is a classic research field in rock and soil mechanics.
边坡与坝基抗滑稳定分析一直都是岩土力学的一个经典研究领域,研究成果很多,根据各种不同的假定形成了各类不同的分析方法,但现有方法的分析基础,即采用抗滑力代数和与下滑力代数和之比定义安全系数,在大部分工程条件下缺乏必要的物理意义。
2)  dam foundation slope
坝基边坡
1.
The excavation disturbance and anchoring effects of high-geostress dam foundation slope of Laxiwa Hydropower Engineering on the Yellow River are systematically studied based on a detailed numerical simulation of excavation and anchoring processes.
基于对开挖与锚固等施工过程的详细数值模拟,围绕拉西瓦水电工程高应力坝基边坡开挖扰动及锚固效应问题开展深入研究,获得该高应力坝基边坡岩体应力、变形与塑性屈服区的开挖扰动特征及其断层影响效应,分析锚固支护对边坡应力、变形及屈服区的作用效果。
3)  high slope of dam foundation
坝基高边坡
4)  abutment section
边坡坝段
1.
Because of two steep bank slopes with the height of more than 100m, its stability and stresses in the abutment sections should be paid attention to.
由于两岸边坡陡峻, 岸高在100 m 以上, 存在高边坡坝段的稳定及应力问题。
5)  abutment slope
坝肩边坡
1.
Finite element simulation of excavation and support of abutment slope at Dagangshan Hy dropower Project;
大岗山水电站坝肩边坡开挖支护有限元模拟
2.
The abutment slope at Dagangshan Hydropower Project has complex geological conditions with faults,dikes,unloading crack intensive belt,deep unloading belt and developed joint fissures.
大岗山水电站坝肩边坡地质条件复杂,断层、岩脉、卸荷裂隙密集带、深部卸荷带及节理裂隙发育。
3.
The general engineering situation of an abutment slope located in the complex area of Dagangshan Hydropower Station with the maximum design and check seismic intensity at present in China is introduced.
以目前国内设计地震烈度最大的水电站工程——大岗山坝肩边坡工程为实例,根据规范,选用拟静力法对坝肩边坡地震工况下的稳定性进行分析,并对该方法进行相应改进。
6)  high slope at the dam site
坝址高边坡
补充资料:坝基变形
      坝基岩土体在坝体自重和各种荷载组合作用下产生的垂直和水平变位及角变位。其中垂直变位即沉陷最常发生,主要是由于岩土体中的孔隙或裂隙被压缩所致。除软弱或具有碎裂结构的岩体外,坝基岩体的沉陷量一般很小,而且都在其弹性限度以内,所以影响不大。但由于建在岩基上的混凝土坝大多数具有较大的刚性,对不均匀沉陷非常敏感。特别是拱坝,坝基或坝肩范围内岩体变形的局部差异,都可能改变坝体应力条件,而最终导致坝的整体破坏。
  
  坝基岩体的不均匀沉陷往往由于岩体中存在下列不利地质因素引起:①由于岩相变化、岩浆岩侵入或断层错动引起的岩性突变或岩体本身的不均匀性;②岩体的不均匀风化,如局部的深风化槽、风化囊和风化夹层的存在;③卸荷裂隙发育的不均一性;④存在断层或剪切破碎带;⑤层理、节理或劈理发育带或产状的局部变化;⑥岩溶洞穴的存在;⑦存在可能发生机械或化学管涌的岩层或夹层等。
  
  反映岩土体变形特性的物理参数是变形模量和泊桑比。一般新鲜、完整的坚硬岩石构成的岩体的变形模量在10000MPa以上,而软弱岩体则大多在2000MPa以下,第四纪沉积物组成的地基的变形模量一般自数十到数兆帕之间变化。因此,对后两类地基,特别是软粘土地基的沉陷变形问题不容忽视。设计时需要进行沉陷计算,并将坝基沉陷量限制在允许范围以内。评价时,首先要求查明坝基的地质条件,进行坝基岩土体的工程地质分类,选择代表性地点进行原位岩体变形试验或取原状样进行土的室内压缩试验。然后,结合岩土体结构特点,分别给出各类岩土体变形特性综合指标。对大的断层破碎带,也应作为单独的岩体类型,直接测定其变形模量。
  
  

参考书目
   天津大学主编:《水利工程地质》,水利电力出版社,北京,1979。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条