1) optimality conditions
最优性条件
1.
Optimality Conditions for a Quasi-differentiable and B-preinvex Programming;
拟可微B-preinvex规划的最优性条件
2.
The Optimality Conditions and Lagrange Duality of Vector Extremum Problems in Abstract Space;
抽象空间中向量极值问题的最优性条件和Lagrange对偶
3.
The study of optimality conditions for generalized quasi-differentiable optimization is very important for Bracken-McGill bilevel programming and other important nondifferentiable optimization problems.
B racken-M cG ill双层规划问题和其他某些重要的不可微优化问题均是广义拟可微优化问题,这类问题的最优性条件的研究是非常重要的。
2) optimality condition
最优性条件
1.
Optimality Condition and Duality Results for a Class of Multi-objective Fractional Programming Problems with Generalized Convexity;
广义凸性条件下一类多目标分式规划问题的最优性条件和对偶
2.
On optimality conditions for a Class of semi-infinite programming;
一类半无限规划的最优性条件研究
3.
The loose saddle point optimality conditions of set-valued functions with super efficiency;
超有效意义下集值函数松弛鞍点最优性条件
3) optimal condition
最优性条件
1.
The existence of optimal solution and first order optimal condition are proved according to the optimal theory and methods of nondifferentiable function.
用不可微优化理论与方法证明了模型最优解的存在性与一阶最优性条件。
2.
To solve the conflict between calculating speed and accuracy in conventional dynamic optimal power flow(DOPF)algorithms,a variation model of DOPF is developed and the optimal condition for the model proposed is derived.
为解决传统动态最优潮流(DOPF)算法中计算速度和计算精度之间的矛盾,建立了电力系统DOPF的变分模型,推导了该变分模型的最优性条件。
3.
Using the calculus of variations method, the optimal conditions of the model are deduced.
采用变分原理,导出其最优性条件,给出了适于梯级水电系统的最优性条件的具体形式。
4) optimal conditions
最优性条件
1.
This paper demonstrates an alternative theorem of generalized subconvex-like maps in ordered linear spaces, by means of which s the optimal conditions of a class of vector extremum problem are obtained.
在序线性空间中证明了广义次似凸映射下的择一定理,利用这一定理获得了一类向量极值问题的最优性条件。
2.
In this paper, some optimal conditions are derived for nonlinear bilevel programming problems in which the leader s objective function is linear but the follower s is quadratic.
利用对偶理论和Kuhn-Tucker条件,研究了一类非线性双级规划问题,给出了该问题解的最优性条件及一个求解算法的理论依据。
3.
Under certain conditions,we derive the first order optimal conditions by Fritz-John conditions.
然后利用Fritz-John条件,在适当的条件下,得到了二层优化问题的一阶最优性条件。
5) Lagrange type optimality conditions
Lagrange型最优性条件
1.
Finally,Lagrange type optimality conditions of strict efficient solutions for the vector optimization problem with generalized inequality constraints the problem are obtained.
首先,在广义锥次似凸集值映射下,获得了向量优化问题的严有效解的标量化的特性,最后,获得了带广义不等式约束向量优化问题的严有效解的Lagrange型最优性条件。
6) first-order optimality conditions
一阶最优性条件
1.
A two-dimensional strip-packing problem is formulated as a nonlinear programming(NLP) model and the notion of tangent cones in variational analysis is employed to establish the first-order optimality conditions for the NLP problem.
将二维装箱问题表示为一个非线性规划模型,用变分分析中切锥的概念建立了这一优化问题的一阶最优性条件。
2.
Based on some new characterizations of the Clarke derivative and Clarke subdifferential of the objective function,we develop the first-order optimality conditions for(GSMMP)in terms of second-order multipliers.
首先通过刻画目标函数的Clarke导数和Clarke次微分,建立其一阶最优性条件。
补充资料:交换符合帕累托最优的条件
交换符合帕累托最优的条件:在纯交换经济中,消费者通过交换获得最大满足。当任意两个消费者消费任意两种商品时的边际替代率都相等时,不可能在不影响他人福利的条件下,使得另外一个获得更大的福利,因此交换符合帕累托最优的条件是RCSA1,2=RCS1,2B。在表示纯交换的埃齐沃斯框图中,当两个消费者的无差异曲线相切时,交换符合帕累托最优。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条