说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 支集
1)  Support [英][sə'pɔ:t]  [美][sə'pɔrt]
支集
1.
Time-frequency Conditions of Multiwavelets and Multiscaling with Different Support of Each Component;
分量支集不同的多尺度和多小波对称性时域条件
2.
A class of Daubechies type orthonormal wavelet bases are constructed, and length of support and regularity of these wavelet bases are discussed.
构造一类Daubeichies型标准正交小波基,分析该类标准正交小波基的支集长度和光滑性质。
3.
Orthogonal multiwavelets can have short support, symmetry or ant isymmetry and orthogonality simultaneously.
正交多小波可同时具有短支集、对称性或反对称性和正交性,这是一般的正交单小波所没有的性质。
2)  group support
集体支持
1.
Education influencing factors analysis to the quality of life of patients suffering from breast cancer under group supports;
集体支持下的乳腺癌患者生存质量及影响因素的分析
3)  minimum support
最小支集
1.
A class of quadratic minimum supported spline wavelet interpolations and application;
一类二次最小支集样条小波插值及其应用
2.
Seven more properties of minimum support spline wavelet are proved by means of the properties of B-spline function Nm(x).
利用B-样条函数Nm(x)的性质证明最小支集样条小波函数的其它7个性质。
4)  compact support
紧支集
1.
Construct n-order differentiable function with compact support in set of real numbers;
在实数集上构造具有紧支集的n阶可导函数
2.
this paper investigates the uniquenes S Of solutions with compact support of a boundary value problem which comes from t He study of asymptotic behavior of blow up solution of the degenerate parabolic System.
证明了具紧支集解的唯一
3.
The Reisz lemma is used to construct a group of orthogonal basis of compact supported wavelets,and the article gives the processes of the construction of orthogonal basis of compact supported wavelets.
应用Riesz引理构造一组紧支集上的正交小波基,并且给出了构造紧支集正交小波基的过程。
5)  centralized payment
集中支付
1.
Combatting Obstacles in Perfecting Centralized Payment System of Universities Treasure;
破除阻力 完善高校国库集中支付制度
2.
Some problems about government shopping are discussed and suggestions are put forward such as detailing the government shopping budgets, establishing a centralized payment system, strengthening the exterior supervision effect, and quickening the legislation process of government shopping.
剖析了目前我国政府采购没有完全发挥其作用的主要原因 ,并针对完善现行政府采购制度提出了 4点建议 ,即细化政府采购预算管理 ;建立国库集中支付制度 ;建立必要的外部监督机制 ;加快政府采购的立法工
3.
We should adopt the managerial mode that taking working out budget as basis, taking practicing treasury centralized payment system as means, governmental purchase system as the guarantee to promote and support the reformation of the fiscal budget and treasury centralized payment system.
以编制部门预算为基础,实行国库集中支付制度为手段,政府采购制度是保障的管理模式来促进和支持财政预算和国库集中支付制度改革。
6)  dominating set
支配集
1.
Through researching into the independent and dominating set in graph theory, this paper has put forward a concept of independent-dominating set and has expounded and proved the internal relationship among the following three concepts: independent-dominating set , maximal independent set and minimal dominating set.
通过对图论中独立集和支配集的深入研究,提出了独立支配集的概念,论证了独立支配集同极大独立集及极小支配集之间的内在联系,并在此基础上给出了独立支配集的最佳求解算法,从而圆满地解决了图论中独立集及支配集的求解问题,对图的着色及匹配等问题的研究均有相当重要的借鉴意义。
2.
Based on the theoretical analysis of the sensing coverage property of the minimal dominating set, the relationship between point coverage and area coverage in geometric graph is established.
根据分析结果,基于构建连通支配集CDS(connected dominating set)的RuleK算法,提出了一种与节点位置无关网络连通性覆盖协议LICCP(location-independent connected coverage protocol)。
3.
In wireless ad-hoc networks,routing based on connected dominating set is a promised approach,where the searching space for route is reduced to nodes in the dominating set.
在ad-hoc网络中,基于最小连通支配集(minimumconnecteddominatingset---MCDS)的路由方法是一种有效的分层路由方法,它将路由搜索主要集中在连通支配集内。
补充资料:测度μ的支集


测度μ的支集
support of a measure

测度召的支集[劝“犯rt ofameasure召;。oc“Te月‘Me-P。,不之】 集合S(召)=G\G.)(拼),其中G是局部紧Hau-sdroff空间,拼是此空问上给定的正则BOrel测度,G。(召)是使拜(Gt,)=0的最大开集.换句话说,S(拜)是拜被支撑的最小闭集.(这里,如果拜(G\E)二O,那么召支于E.)若S(拜)是紧集,则称#是具有紧支集(eompacts叩Port)的. M.H.Bo认uexoBeKH盛撰【补注】对拓扑空间G上的测度召,当所有#零开子集的并集仍为零测集时,是可以定义召的支集的.在G有可数基,或拜是胎紧的或“是Radon测度(见正则测度(regular measure))时正是这种情形.但若G仅为局部紧以及群不是胎紧的,则就不总是如此了. 当然,对于带拓扑T的拓扑空间G上的测度拜,总是可以定义 S(尸)一G\日{V:V〔T且#(V)=0},但此时不一定有“(G\S(召))二O,而有违于支集的直觉.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条