说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 贝叶斯诊断网络
1)  Bayesian diagnostic network
贝叶斯诊断网络
1.
To solve the consistency problem of knowledge representation of the Bayesian diagnostic network,the mapping framework between the failure modes and the physical components are established,and a kind of hierarchical structural model of the multiple failures is proposed combined with the structural decomposition of the complex system.
针对贝叶斯诊断网络知识表达不一致的问题,提出了一种基于结构分解的层级式多重故障结构模型,并引入多色集合理论,对这种结构模型的底层框架进行形式化描述,使得模型便于计算机表达和操作。
2.
The fact that Bayesian diagnostic network must be constructed for a specific diagnosed object in the practical applications motivated to develop a new network platform.
针对贝叶斯诊断网络在实际应用时需要对具体对象建立相应诊断网络的问题,开发了一个贝叶斯诊断网络平台。
2)  Diagnostic Bayesian Networks
诊断贝叶斯网络
1.
Aiming at the intrinsical uncertainty in fault diagnosis,a diagnostic Bayesian networks method integrated with fault tree(FT) and Bayesian networks(BN) was proposed through analyzing the limitation of traditional fault tree model and the difficulty in constructing traditional Bayesian networks.
针对设备故障诊断技术中存在的固有不确定性问题,通过分析传统故障树模型存在的局限性以及传统贝叶斯网络建造困难的特点,提出了一种融合于故障树和传统贝叶斯网络的新方法—诊断贝叶斯网络法,并阐述了故障树和贝叶斯网络的故障诊断策略优化方法的基本思想和具体算法。
3)  diagnosis Bayesian network model
诊断贝叶斯网络模型
4)  Diagnostic Bayesian Network Model
贝叶斯网络诊断模型
5)  Bayesian networks
贝叶斯网络
1.
Application of Bayesian networks in the risk decision of mining investment;
矿业投资风险决策的贝叶斯网络方法
2.
Methods of mapping fault trees with house events into Bayesian networks;
存在房形事件的故障树向贝叶斯网络的转化
3.
Empirical study on bayesian networks in english ability test in higher vocational college;
贝叶斯网络在高职英语应用能力考试中的应用研究
6)  Bayesian network
贝叶斯网络
1.
A method of data rectification based on Bayesian network;
基于贝叶斯网络的数据校正方法
2.
Remote Sensing Monitoring of Soil Salinization Based on Bayesian Network Classification.;
基于贝叶斯网络分类的土壤盐渍化遥感监测
3.
A bayesian network approach to accident analysis;
基于贝叶斯网络的一种事故分析模型
补充资料:贝叶斯公式
贝叶斯公式为利用搜集到的信息对原有判断进行修正提供了有效手段。在采样之前,经济主体对各种假设有一个判断(先验概率),设为,{}。
关于先验概率的分布,通常可根据经济主体的经验判断确定(当无任何信息时,一般假设各先验概率相同),较复杂精确的可利用包括最大熵技术或边际分布密度以及相互信息原理等方法来确定先验概率分布。
当采样得到样本值后,当事人对各假设的判断(后验概率)为

,= 1, 2, %26#8230;,        (5.5)

  在实际经济生活中,信息搜寻工作不是一次就完成的。当信息搜寻进行到某一阶段,设已进行了 次采样( =1,2,%26#8230;),此时经济主体对各假设的后验概率的认识为

 =1, 2, %26#8230;,        (5.6)


  其中,表示在第次采样前对假设的判断,当 =1时即表示第一次采样前的先验概率,从而式(5.5)变成式(5.6)的一个特例,即,将其记为。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条