1) geometrical convexity
几何凸性
1.
The ordinary convexity,geometrical convexity,logarithmical convexity and the exponential convexity are mentioned in the first two sections;the ideal convexity,integral convexity and the β-convextiy are presented in the central three sections;for the more generalized convexties are briefly introduced in the last section.
本文第一节简述通常凸性概念及其在不等式理论方面的几个简单应用,第二节简介几何凸性、对数凸性、指数凸性及其与通常凸性之间的相互关系;第三节介绍集合与函数的理想凸性;第四节简介由笔者首创的积分凸性及其进展。
3) Geometric convex set
几何凸集
4) convex geometry
凸几何
5) convex geometry
凸面几何学
1.
A model building method for convex object was developed based on the geometric relationship between a point and each volume cell of a convex object based on the convex geometry.
其主要思路是利用凸面几何学的理论判断空间任意一点和凸体每一个体元之间的位置关系,进而可以判断此点与整个凸体的位置关系,由此建立了凸体的Yee元胞建模方法。
6) geometrically convex function
几何凸函数
1.
In this paper,the author obtains several important results for the geometrically convex function by first pointing out a new relation between geometrically convex function and Sgeometrically convex function,proving some properties of geometrically convex function in image and establishing a sufficient and necessary condition of geometrically convex function.
通过对几何函数有关定义和性质的深入研究,得到了几个重要结果,其中有对称对数凸集上的对称几何凸函数是S几何凸函数、几何凸函数的上图像是对数凸集、一维几何凸函数的一个重要条件。
2.
This paper improves the definition of S-geometrically convex function.
本文首先对现有的S-几何凸函数定义进行了拓广,定义了广义S-几何凸函数,得到广义S-几何凸函数的判别定理,并依此推广一个已知不等式。
3.
By using some properties of geometrically convex function,this paper gives two new results of the Mills′ ratio Rx=ex22∫+∞xe-t22dt, when x>2.
利用几何凸函数的性质,给出关于Mill比R x=ex22∫x+∞e-t22dt的两个新结果。
补充资料:凸凸
1.高出貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条