1) reservoir stack stratum slope
库岸堆积体斜坡
1.
Based on the deduction of uniform rheological formulation combined with elastic-viscoelastic model,this paper gives a time series evolution deformation monitoring model of reservoir stack stratum slopes under the action of multiple factors,providing a theoretical foun.
库岸堆积体斜坡受库水位变化、时效和降雨的影响显著,研究蠕变对堆积体稳定性的影响可为其准确预测、预报提供科学依据。
2) reservoir embankment accumulation slope
库岸堆积体
1.
The percolation process and conditions of rainfall into accumulation slope is studied based on mechanism of sliding due to rainfall infiltration;a reservoir embankment accumulation slope s saturated/unsaturated seepage field and its stability are calculated based on extended Mohr-Coulomb strength law.
在对降雨入渗及其引发边坡失稳机制的研究基础上,基于饱和非饱和渗流数学模型,运用延伸的摩尔库伦强度理论,对某库岸堆积体斜坡进行了降雨过程的饱和非饱和渗流场计算和稳定分析。
3) deposit-on-slope
斜坡堆积体
1.
Based on the pseudo-static method,the reinforcement measures of anti-slide piles and their combination with anchor bolt frames were investigated with centrifuge model tests and numerical simulation in order to probe into the failure mechanism of deposit-on-slope reinforcement under an earthquake.
为探讨地震作用下斜坡堆积体的加固破坏机理,基于拟静力法理论,采用土工离心模型试验技术和数值模拟方法,对采用抗滑桩、抗滑桩联合锚杆框架2种加固措施进行了对比分析。
5) artificial pile slope
人工堆积斜坡
1.
Stability evaluation and control measure for Yanchi Mountain artificial pile slope in Jinan City;
济南市燕翅山人工堆积斜坡稳定性评价及治理对策
6) talus landslide
堆积体滑坡
1.
Failure properties and safety warning of talus landslide in Qingjiang area;
清江地区堆积体滑坡破坏特性及安全预警
2.
A new determination warning method for progressive failure propagation of sliding zone on talus landslide is proposed.
以大岩淌堆积体滑坡为例,提出一种预警渐进破坏传播的确定性方法,其创新在于能定量预警滑带破坏传播的全过程,包括破坏传播的方向和速度,破坏的相应日期以及滑坡的破坏程度。
补充资料:水库库岸演变
在库水与库岸相互作用下,库岸的变化。水库蓄水后,水位迅速上升,水边线向外推移,水体范围扩大。在风的作用下库水面倾斜,生成波浪。上升的库水位抬高岸边地下水水位,使原先处于干燥状态的岩土湿化,增加其容重,降低土体或基岩中软弱结构面的抗剪强度,使岸坡岩土失去平衡,引起岸壁坍落(或滑坡),岸边淤积和岸坡变形。
松散堆积物库岸的演变过程 蓄水初,库岸比较陡峻,湿化的松散沉积物自然崩坍于坡脚。波浪冲击陡岸,在坡脚水深较小处破碎,以更大冲击力破坏岸壁。自然崩坍和冲刷坍落的松散土成为悬移质和推移质被波浪回流带离坡脚,淤积于岸边,库岸边线后退,水下浅滩开始形成(见图)。波浪重复作用,库岸继续坍落、后退,浅滩逐渐增长,同时也改变波浪与库岸相互作用的特征。正在扩展的水下浅滩使波浪折射变形,在离岸远处破碎,演变为拍岸波。浅滩的粗糙表面和透水空隙消耗波能,削弱波浪对岸坡的冲刷,从而减缓库岸后退速度。库区的淤积也促进水下浅滩形成,阻滞坍岸发展。这一过程直至浅滩拓宽到足以消耗全部波能,库岸后退与浅滩发展渐趋稳定,形成平衡剖面。结冰地区水库的浮冰也参与库岸演变过程。中国官厅水库在两年观测期内,测得最大波高2米,库岸后退最大距离34米。(见水库淤积)
基岩库岸的演变过程 蓄水初期,岩体湿化自重增加。如果岩体坚硬,连续性好,只发生少量的岩块崩坍,而且保持陡峻的平衡剖面。如果湿化岩体结构面发育,而且结构面又是充填软弱粘土岩夹层或粘土的断层带和节理裂隙,粘土岩和粘土浸水后软化。沿着倾向库区的这种结构面,库岸岩体可产生突发性的崩坍或滑坡。与松散堆积物库岸的渐进性演变过程相比,基岩库岸演变常表现为跳跃式的。一次滑坍规模很大,延续时间较短,库岸经一次或数次坍落后即趋向平衡。由于大量岩块瞬间倾入水中,急剧改变库区水文特征。岩体冲击库水掀起非线性涌浪。如滑坡和崩坍发生在近坝或坝肩附近,涌浪可越过坝顶,破坏性极大,危及大坝和下游的安全。意大利瓦依翁特水库左岸,1963年库岸滑坡,滑体2.4~3.0亿立方米,主要滑落时间约20秒,库水越过260米高的大坝,涌浪高出坝顶 100余米,冲毁下游村镇,死亡2000多人。中国湖南柘溪水库,1959年在塘岩光发生滑坡,165万立方米土石以25米/秒的速度倾泻入库,历时约10秒钟,涌浪高达21米,越过未竣工的坝顶,造成损失。
库岸演变预报 包括测报库岸演变的空间分布、规模、岸壁后退距离、巨大滑坡发生时间、边坡坍落入水的速度和诱导的水面涌浪高度以及各项波浪要素。在预报中确定岸坡防护措施,核算坝高和坝面波压力。中国北方黄土地区采用图解法,按岸坡均衡剖面形成图式,根据定位实测坡形数据、库水位动态和风浪要素等预测松散堆积物库岸坍岸宽度。基岩库岸演变按岩体力学和工程地质分析计算法预测。中国学者根据结构面控制岩坡稳定的原理,提出各种图解分析法预测崩坍和滑坡的空间分布和规模。如应用两类优势面的方法,按构造分析原理找出地质优势面(性质优势面),用统计方法找出数量优势面,即可确定真正的优势面,据此判断岩坡破坏类型和模式。用极限平衡理论和有限元分析技术可定量评价基岩库岸的稳定性。
松散堆积物库岸的演变过程 蓄水初,库岸比较陡峻,湿化的松散沉积物自然崩坍于坡脚。波浪冲击陡岸,在坡脚水深较小处破碎,以更大冲击力破坏岸壁。自然崩坍和冲刷坍落的松散土成为悬移质和推移质被波浪回流带离坡脚,淤积于岸边,库岸边线后退,水下浅滩开始形成(见图)。波浪重复作用,库岸继续坍落、后退,浅滩逐渐增长,同时也改变波浪与库岸相互作用的特征。正在扩展的水下浅滩使波浪折射变形,在离岸远处破碎,演变为拍岸波。浅滩的粗糙表面和透水空隙消耗波能,削弱波浪对岸坡的冲刷,从而减缓库岸后退速度。库区的淤积也促进水下浅滩形成,阻滞坍岸发展。这一过程直至浅滩拓宽到足以消耗全部波能,库岸后退与浅滩发展渐趋稳定,形成平衡剖面。结冰地区水库的浮冰也参与库岸演变过程。中国官厅水库在两年观测期内,测得最大波高2米,库岸后退最大距离34米。(见水库淤积)
基岩库岸的演变过程 蓄水初期,岩体湿化自重增加。如果岩体坚硬,连续性好,只发生少量的岩块崩坍,而且保持陡峻的平衡剖面。如果湿化岩体结构面发育,而且结构面又是充填软弱粘土岩夹层或粘土的断层带和节理裂隙,粘土岩和粘土浸水后软化。沿着倾向库区的这种结构面,库岸岩体可产生突发性的崩坍或滑坡。与松散堆积物库岸的渐进性演变过程相比,基岩库岸演变常表现为跳跃式的。一次滑坍规模很大,延续时间较短,库岸经一次或数次坍落后即趋向平衡。由于大量岩块瞬间倾入水中,急剧改变库区水文特征。岩体冲击库水掀起非线性涌浪。如滑坡和崩坍发生在近坝或坝肩附近,涌浪可越过坝顶,破坏性极大,危及大坝和下游的安全。意大利瓦依翁特水库左岸,1963年库岸滑坡,滑体2.4~3.0亿立方米,主要滑落时间约20秒,库水越过260米高的大坝,涌浪高出坝顶 100余米,冲毁下游村镇,死亡2000多人。中国湖南柘溪水库,1959年在塘岩光发生滑坡,165万立方米土石以25米/秒的速度倾泻入库,历时约10秒钟,涌浪高达21米,越过未竣工的坝顶,造成损失。
库岸演变预报 包括测报库岸演变的空间分布、规模、岸壁后退距离、巨大滑坡发生时间、边坡坍落入水的速度和诱导的水面涌浪高度以及各项波浪要素。在预报中确定岸坡防护措施,核算坝高和坝面波压力。中国北方黄土地区采用图解法,按岸坡均衡剖面形成图式,根据定位实测坡形数据、库水位动态和风浪要素等预测松散堆积物库岸坍岸宽度。基岩库岸演变按岩体力学和工程地质分析计算法预测。中国学者根据结构面控制岩坡稳定的原理,提出各种图解分析法预测崩坍和滑坡的空间分布和规模。如应用两类优势面的方法,按构造分析原理找出地质优势面(性质优势面),用统计方法找出数量优势面,即可确定真正的优势面,据此判断岩坡破坏类型和模式。用极限平衡理论和有限元分析技术可定量评价基岩库岸的稳定性。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条