1) non-Gaussian ARMA model
非高斯ARMA模型
2) ARMA model
ARMA模型
1.
Analysis of time-series forecast for industrial accidents based on ARMA model;
基于ARMA模型的中国工伤事故死亡率预测研究
2.
Applying ARMA models to forecast the price index of ships;
ARMA模型在预测船价指数中的应用
3.
Identification of structural wibration model parameters based on ARMA model;
基于ARMA模型的结构动力模态参数识别
3) ARMA
ARMA模型
1.
Study on Application of ARMA Model to the Measurement of Two-Phase Flow;
ARMA模型在两相流检测中的应用研究
2.
A new self-tuning Kalman filter based on ARMA model has been designed to avoid the flaw of classical Kalman filter which needs to accurately know the model parameter and statistical characteristic of noise in system.
设计了一种新的基于ARMA模型自校正卡尔曼滤波器及其信息融合的方法,从而避免了经典卡尔曼滤波器需要精确知道系统的模型参数和噪声统计特性的缺点。
3.
In this paper,a new self-tuning Kalman filter based on ARMA model has been designed to avoid the flaw of classical Kalman filter which needs to accurately know the model parameter and statistical characteristic of noise in system.
文中设计了一种新的基于ARMA模型自校正卡尔曼滤波器,从而避免了经典卡尔曼滤波器需要精确知道系统的模型参数和噪声统计特性的缺点。
4) ARMA-ANN model
ARMA-ANN模型
5) ARMA models
ARMA模型
1.
By using AR models to approximate ARMA models,an algorithm is presented for identifying ARMA models.
通过用AR模型等价ARMA模型的思想,提出了一种确定ARMA模型参数估计方法。
2.
The objective of this paper is to estimate the parameters of generalized discrete exponential family ARMA models and construct the confidence intervals of the parameters.
针对广义离散型指数族ARMA模型,采用Scoring算法对模型进行参数估计,并得到Scoring算法中方向向量的计算公式;再运用分块移动Bootstrap构造参数的置信区间,这种方法更加实用,收敛速度快,并在模拟数据和真实数据部分都得到令人满意的结果。
3.
To solve the problem that the model identification and the parameter estimation in the ARMA models easily affected by the outliers in time series data,this paper constructed a robust ARMA model which has both additive and renewal outliers.
针对ARMA模型建模过程中模型识别和参数估计易受观测值异常点影响问题,构建了同时考虑加性异常点和更新性异常点的ARMA模型。
6) ARMA model
ARMA 模型
1.
We use Marquardt method to estimate the parameters of ARMA model and apply F-test to determine the orders of ARMA model.
在对过程控制系统的日常输出进行时间序列分析时,对于 ARMA 模型的参数估计我们使用了麦夸特(Marquardt)方法来进行最小二乘估计,并采用 F-检验进行模型定阶,取得了满意的结果。
2.
Structure Identification Based on ARMA Model;
系统识别方法虽多种多样,本文针对线性二阶系统采用基于Auto-RegressiveMoving Average(ARMA)模型的时域识别方法是基于以下原因考虑的:一是由于实际工程结构与ARMA 模型存在着对应关系,由此模型参数的估计过程也就完成了对系统的一次识别过程;二是时变ARMAV 模型可以解决制约结构识别发展的两个很主要的难题-多自由度体系的识别和结构时变参数的识别;三是这种方法不仅可以在输入未知的情况下进行结构识别分析,而且不会丢失系统信息,从而拓宽了系统识别的应用领域。
补充资料:非想非非想处天
1.佛教语。即三界中无色界第四天。此天没有欲望与物质﹐仅有微妙的思想。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条