1) process neuron
过程神经元
1.
The process neural networks(PNNs) are networks that adapt to the process of signal input,whose elementary unit is the process neuron(PN),an emerging neuron model.
过程神经元网络是一种适合于处理过程式信号输入的网络,其基本单元是过程神经元——一种新的神经元模型。
2.
Its hidden layer and output layer are compose d of process neuron and the hidden layer function consists of wavelet function.
其隐层和输出层为过程神经元,隐层激活函数采用小波函数。
3.
A continuous wavelet process neural networks(CWPNN)model is proposed based on wavelet analysis and process neural network theory in which the hidden layer is composed of process neurons and the hidden layer activation function is a wavelets function.
在小波分析和过程神经网络理论的基础上,提出了连续小波过程神经网络模型,其隐层为过程神经元,隐层激活函数采用小波函数。
2) procedure neuron
过程神经元
1.
First the discrete data of both sample function and procedure neuron weight function is converted to spline function, and then spline function product integral of both samp.
过程神经元网络的提出为大样本识别问题开辟了新途径,但其训练方法目前主要基于权函数正交基展开。
2.
The FPNN has three layers, and its hidden layer and output layer are procedure neuron.
提出了一种带有反馈输入的过程式神经元网络模型,模型为三层结构,其隐层和输出层均为过程神经元。
3.
The FPNN has three layers, and its hidden layer and output layer are composed of procedure neurons.
提出了一种带有反馈输入的过程式神经元网络模型 ,模型为三层结构 ,其隐层和输出层均为过程神经元 。
3) process neural networks
过程神经元网络
1.
A process neural networks model and its application to dynamic forecasting;
一种过程神经元网络模型及其在动态预测中的应用
2.
Process neural networks with time-varying inputs and outputs and learning algorithm;
一种时变输入输出过程神经元网络及学习算法研究
3.
Aimed at the problems of the time-varying information processing and the dynamic system modeling, two kinds of process neural network models,including the rational formula process neural networks and the process neural networks with time-varying inputs and outputs function,were built in this paper.
针对时变信息处理和动态系统建模等类问题,建立了输入输出均为时变函数的过程神经元网络和有理式过程神经元网络2种网络模型。
4) process neural network
过程神经元网络
1.
Research and application of process neural network with two hidden-layer based on expansion of basis function;
基于基函数展开的双隐层过程神经元网络及其应用
2.
A dynamic prediction method based on process neural networks is proposed for the process forecasting and prediction problem of dynamic system.
针对动态系统过程预测预报问题,提出了一种基于过程神经元网络的动态预测方法。
3.
A modular process neural network model based on multi-basis-functions is brought forward in this article,in which the spatial aggregation and temporal limited accumulation of discrete-time inputs are involved.
提出一类基于多种正交基函数的模块化过程神经元网络模型,它融入了多时变输入的空间聚合和作用域限制的时间累积,并采用多种正交基函数在较小网络规模的条件下保证系统各种输入输出的精度,应用混合隐含层综合考虑了系统多类型输入对系统的作用,并应用模块化级联的方式在一定程度上减小了网络的总体容量,从而提高了整个网络的学习速度。
5) nervous process
神经过程
6) Fuzzy process neural network
模糊过程神经元网络
补充资料:神经元形态中枢神经系统内轴突髓鞘的形成示意图
李瑞端绘
[图]
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条