1) elastic-plastic solution
弹塑性解
1.
In elastic-plastic solution of expansion of spherical cavities, based on Mohr-Coulomb strength criterion, the effect of intermediate principal stress on yield and failure of soil is not analyzed.
基于Mohr-Coulomb理论推导的球形孔扩张问题的弹塑性解,没有考虑中间主应力的影响,因而与实际结果有误差。
2.
The elastic-plastic solution of expansion of sphere cavities based on Tresca strength criterion and Mohr-Coulomb strength criterion did not take account of the effect of intermediate principal stress.
基于Mohr-Coulomb理论推导的球形孔扩张问题的弹塑性解没有考虑中间主应力的影响。
3.
In the elastic-plastic solution of expansion of cylinder cavities based on Tresca strength criterion and Mohr-Coulomb strength criterion, the influence of neutral principal stress is not considered.
Tresca强度理论、Mohr-Coulomb强度理论在求解圆筒形孔扩张问题时的弹塑性解并没有考虑中间主应力的影响。
2) Elastoplastic solution
弹塑性解
1.
Based on the elastic theory method and p-y curve method,the elastoplastic solutions for the problem of excavation adjacent to the existing pile foundations were given.
基于弹性理论法和p–y曲线法,通过桩土间设置的界面滑块和土体统一极限抗力来考虑土体塑性屈服,提出了基坑开挖对邻近桩基影响的弹塑性解。
2.
Based on a two-stage method,a simple elastoplastic solution was outlined for computing the lateral response of passive pile subjected to surcharge action.
采用两阶段分析方法,提出了堆载与邻近桩基相互作用的弹塑性解。
3) elasto-plastic analytical solution
弹塑性解析解
补充资料:弹—塑性变分原理
弹—塑性变分原理
elastic-plastic variational principle
tan一suxing bionfen yuanll弹一塑性变分原理(elastie一plastic variation-al Principle)适于弹一塑性材料的能量泛函的极值理论。包括最小势能原理和最小余能原理。塑性加工力学中常用最小势能原理。变形力学问题的能量解法和有限元解法都基于最小势能原理。最小势能原理有全量理论最小势能原理和增量理论最小势能原理。 全量理论最小势能原理在极值路径(应变比能取极值的路径)下运动许可的位移场u‘中,真实的位移和应变使所对应的总势能取最小,即总势能泛涵巾取最小值,其表达式为”一0,’一万〔A(一,一关一〕dV一好多!一‘“ (l)式中“:为位移;户:为外力已知面上的单位表面力;关为体力;A(气)为应变比能。 A(勒)随材料的模型而异。对应变硬化材料(图a), E严_‘_‘_ A(乓r)一二丁二一气助+{刃(r)dr(2) 6(1一2刃~一“‘J一、-一、- 0式中E,,分别为弹性模量和泊松比;艺一硫瓜,r一掩不万,,,f,一,一音。魔。,,一,一,一音。*。!,;。f,为克罗内克(L.Kroneeker)记号,i=夕时a,一l,i笋少时民,一。,把式(2)代入式(1)便得到卡恰诺夫(几·M·Ka、aHoe)原理x的表达式。i厂:八 I’—几 I’一 ab 乞一乏(r)关系图 a一应变硬化材料;占~理想塑性材料 对于理想塑性材料(图b), 艺~ZGr(r
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条