1) buffer operator
缓冲算子
1.
Matrix of linear buffer operators and their applications;
线性缓冲算子矩阵及其应用研究
2.
Study on the sequence of strengthening buffer operator and its application by m-th order;
强化缓冲算子序列与m阶算子作用研究
3.
Application of modified DGM(1,1) models by buffer operators to load forecasting
缓冲算子修正的DGM(1,1)模型在负荷预测中的应用
2) buffering operator
缓冲算子
1.
Energy forecast based on gray series spanning buffering operator;
基于灰色序列生成中缓冲算子的能源预测
2.
To attenuate its randomness,we take the noisy data that multi-passive-sonar locates as a shock disturbed sequence and use the buffering operator upon it.
针对水下机动目标的无源定位和跟踪问题,先运用测向定位和时差定位相结合的思想,给出来自水下机动声源目标的定位解;然后在此基础上,将多部被动声呐在各个状态时刻所定位的含噪声数据视为一冲击扰动序列,对其应用缓冲算子作用,以弱化其随机性。
3) buffered softening arithmetic
缓冲弱化算子
1.
The buffered softening arithmetic is used to eliminate the infinite increase of the gray prediction model.
以某工程实测数据为基础,运用灰色理论建立了地基沉降的非等时距等维的新陈代谢预测模型,并引用缓冲弱化算子的概念,以消除灰色预测模型的无限增长性。
4) strengthening buffer operator
强化缓冲算子
1.
Study on the sequence of strengthening buffer operator and its application by m-th order;
强化缓冲算子序列与m阶算子作用研究
2.
The Construction of Practical Strengthening Buffer Operator Based on the Monotone Function
基于单调函数的若干实用强化缓冲算子的构造
5) weakening buffer operator
弱化缓冲算子
1.
The starting-point of the paper is shock-vibration problem which often appears in prediction,under buffer operator axioms of grey system theories,t-AWBO(t-power Weakening Buffer Operator) sequence is established which has the practicability,and some existing weakening buffer operators are arranged.
本文以预测过程中常常出现的冲击扰动问题为出发点,在灰色系统理论缓冲算子公理体系下,构造了一类弱化缓冲算子序列,对现有的弱化缓冲算子进行了整合,研究了这类弱化缓冲算子定义的内涵,实例验证了该算子序列的有效性和实用性,为解决冲击扰动系统在建模预测过程中出现的定量预测结果与定性分析结论不符的问题提供了可以借鉴的方法。
6) Buffer Operators with Variable Weight
变权缓冲算子
1.
Geometry Buffer Operators with Variable Weights and the Intensity of Their Influence on Original Sequence
几何变权缓冲算子及其作用强度研究
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条