1) knowledge trigger point
知识触点
2) knowledge points
知识点
1.
Study of important degree on Health Statistics knowledge points;
卫生统计学知识点重点程度的探索分析
2.
Based on the research development, the teaching material construction result and the problems in the teaching process of clothing material subject, and around the integral teaching aims of the subject, this paper puts forward the selection of construction principle and knowledge points, the optimized system of the teaching content and basic skills to be mastered.
本文基于服装材料学科的研究进展、教材建设成果和教学实施过程存在的问题,围绕服装材料学的整体教学目标,提出服装材料学内容体系的构建原则、知识点的筛选、教学内容的优化体系和应掌握的基本技能。
3.
This paper proposes a kind of classified method of knowledge points based on Aeronautics knowledge,counts all kinds of knowledge points,and offers the storage structure of knowledge points.
基于航空知识提出一种划分知识点类型的方法,对各种知识点类型进行统计,给出知识点的存储结构。
3) knowledge point
知识点
1.
Design of knowledge points in intelligence tutoring website;
智能化教学网站中知识点的设计
2.
On the design of review and test subsystem of the learning system based on knowledge points in the network;
以知识点为特征的网上学习系统评测子系统的设计
3.
Research on application of CAI system based on knowledge point;
基于知识点的CAI系统的应用研究
4) Knowledge point tree
知识点树
5) knowledge node
知识点
1.
Design and Implementation of a Platform for Courseware Designing Based on Knowledge Nodes;
基于知识点的课件制作平台的设计与实现
2.
Successful information integration of enterprises lies in dynamic organization & generation of relevant knowledge nodes in information chain-group, and the collaborative workflow of these nodes, which were established in the chain-group network.
知识点是企业生产信息协同集成网络系统的基本节点,在生产信息网络组建时,可以按照自己的协同需求,调用合适的知识点作为节点单元,以构成生产工作流链;也可以按照产品市场的变更需求对个别节点进行调节。
3.
It has a good semantic structure and clear hierarchy,which are in good accord with the tree structure data of knowledge node in web courseware.
XML是未来Internet数据交换的理想格式,具有良好的语义和清晰的层次与结构,同网络课件中以知识点为基本单位形成的树状层次结构数据正好相符,因此XML已成为网络课件资源描述的首选语言。
6) knowledge node
知识节点
1.
Studies on the Mechanism of Supply Chain Knowledge Node;
供应链知识节点作用机制研究
2.
This paper discusses the composition of knowledge network structure,and especially pays the emphasis on the knowledge node and its types through giving them deeply dissertation.
详细探讨知识网络的结构组成,重点对知识节点及其类型进行全面深入的讨论:首先对构成知识节点的知识元、知识单元、知识因子、知识点等概念进行区别;其次提出知识关联包括同一性关联、隶属性关联和相关性关联三种关联类型:最后对与知识网络结构密切相关的知识链、知识链接等概念进行论述。
补充资料:触点模式
触点模式
contact scheme
触点模式沁犯加d叻,e;~一~“l,妙卓甲挣(con‘act ne‘work),触卓毕跨(con‘act drCUi‘),匆换线路(switching drcuit) 一类特殊控制系统的表示,由继电接触器组成的实际结构的一类数学模型.一个接触网络是一类控制系统的模型,需要对它研究的问题与其他类控制系统是一样的.在研究控制系统的“结构”性质时,它特别有用. 将一组选定的顶点联接以边线就成一图,给每一边一个从有限字母表{x,,瓦,…,x。,不}中选出的字母,就得到一个触点网络S.所选的顶点被称为甲络妙端卓(tertninals of network)或竿卓(n edes of ne‘work)·附有字母x‘(或不)的边称为禅(或断)妙卓·在S的端点a与b之间的一个触点序列对应于一个简单的链(或路径)(见图(graPh”称为图s中“与b间的铸(chain),相应的字母的合取称为给定链的传导字(conductivity)一模式的两个端点a与b间的传导率是一个Boole函数五。(xl,…,x。),它等于这两个端点间所有链的传导率的析取(当a与b间的链集是空的时fa,=0,当a与b重合时fa,三1).与每个触点网络相联系的有一个传导率矩阵}几”,这个矩阵的元素正是两个端点间的传导率.这里,几·人簇fac.相反地,如果给出的Boole函数的矩阵”儿。”使得fa。兰1,儿。=儿。及几·瓜<无对任意a,b,。成立,则存在一个触点网络,其端点使所有传导率为几.特别地,对任意f存在一个两端点网络,它的端点间传导率等于f.在这尸情况下,可说:网络寒那呼攀f例如图1所示的网络实现一个线性函数f=xl十…十x。十l(modZ).每一 嗜琪一》 图l个Boole函数可由某一触点网络来实现.有时一个触点网络中的所有端点的集合被分成两个子集:输人与输出一个具r个输人和“个输出的触点网络称为妙卓(r,“)烤卓甲峥一个触点网络,若它的任一对输出(或输人)间的传导率等于零,则称为相对于输出(或输人)是分离的.一个分离的(相对于输出)(1,2”)端点网络可由一触点树(tree)给出(图2).‘少一《.之 元、<二丫 图2一个触点网络称为可平面的(pfanar),若它的图加上一个源边(即,联接端点的边上没有附加字母)后是可平面的(见可平面圈(graph,Planar))一个平面触点网络S’称为对偶(d uai)于平面触点网络S,若S’的图r’(具有源边)对偶于S的相应图r,其中r‘的源边对应于r的源边,而其余的相应边均标以相同的字母 仁 图3〔图3).网络S与S’有相同数目的触点并实现对偶函数(对偶原理).如果网络S*的触点代之以它们相对的触点,就得到由S实现的函数的负函数.一般来说,不能从非平面触点网络转变到另一具有相同数目的触点并实现对偶函数的触点网络.一个n网络(并串网络)可以用归纳法定义:由单一触点连接端点组成的触点网络是一个n网络,由两个n网络并联或串联地连接起来构成的触点网络也是一个fl网络,存在一些触点网络,它们并非n网络,如图4所示的网络. <) 图4n网络的对偶仍是n网络存在着n网络与用{%26,V,一}表述的公式之间的对应关系,此时,每一个n网络实现与它对应的公式相同的函数,而且具有的触点数等于公式中的字母数.例如,与图5所示之网络对应的公式为 (x,xZV交、又ZXx3x‘V又3又;)V(x.又ZV牙.声2) (x,又‘V又3x4)· 工,~ 《》 牙2牙J 图5触点网络的复杂性表现在它的触点数上.用触点网络实现一个依赖于门个变量的任意B以)le函数所需要的最小触点数渐近地等于2”从;足以实现一个n网络的最小触点数渐近地等于2“/109:。(见综合问题(synthesisProblems)). 两个触点网络称为等价的(e quivalent)(在一个给定的端点间的一对应关系下卜如果它们的任两对应端点间的传导率相同.在将触点网络S的任一子网络尽代之以它的等价网络后,得到的网络等价于S(在替代中,必须将所有在S,中的S的端点和不在S、中的S的触点上的所有S、的顶点都当作S,的端点)若S,和从是等价网络那么触点网络的等价变换规律S,月s:,使我们能在任意网络中将从51(或S:)中得到的子网络通过字母的重新命名,代之以从5(或S,)中得到的触点网络,并通过同样的重新命名. 产福-一‘,. 刀2 子一了、军了 之2 钾一群一<华 5「邝 汁甲—一‘\j 了、J 石一,罕’、呀一 东J \、_ 图6对任一陀,存在个有限的完全规则系统(图6),使得可以对变量数不超过陀的任意两个等价触点网络互相转换.但是对所有触点网络集(对变量数目不加限制),并不存在一个有限的完全规则系统(如果在应用规则时只允许字姆的重新命名)‘
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条