说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 大型雷电探测网
1)  large-scale lightning detection network
大型雷电探测网
1.
This paper establishes the lightning location model and analyzes the figure factor for large-scale lightning detection network.
当把多个雷电时差定位系统局域网连接成大型雷电探测网时,由于图形因素和定位精度的非线性因素,必须研究新的计算方法和相应的精度估计方法。
2)  lightning detection
雷电探测
1.
The location positioning accuracy of the China lightning detection system is usually within 1 km because of involving many influencing factors in lightning detection process.
目前我国的雷电探测定位系统的定位精度一般是1 km以内,其原因主要是在雷电探测过程中涉及诸多因素,这些因素最终给雷电探测带来大小不同、性质各异的误差,从而使雷电定位结果中含有较大误差。
3)  netted radar system detection
雷达组网探测
4)  lightning detection network
雷电监测网
1.
In the lightning location technology research,lightning location system independent developing and the lightning detection network construction,it started early,and had good durative in China.
在雷电定位技术及其系统自主研发以及雷电监测网的建设上,中国属起步早、持续性好、已建的监测覆盖区域大、积累监测资料长的雷电监测大国,我国电力系统率先并持续开展了雷电监测,并建有覆盖国土面积大部分的全国雷电监测网。
2.
Combining with the China Grid Lightning Detection Network(CGLDN),this paper utilizes the latest high-speed video system with the maximum resolution of 1024 1024 pixels,the maximum frame rate of over 650,000fps,and the record time over one second to carry out .
5×105帧/s、最大分辨率达(1024×1024)像素,拍摄时长达秒级的摄像系统,结合覆盖全国电网的雷电监测网,对雷电放电过程进行了观测研究和分析。
5)  Radar detection model
雷达探测模型
6)  ionospheric sounding radar
电离层探测雷达
1.
The SCM applied in ionospheric sounding radar makes the timing of coder in the radar program- mable.
将单片机应用于电离层探测雷达中,软化了雷达编码器的时序。
补充资料:控制雷电和利用雷电

控制雷电利用雷电

 随着科学技术的迅速发展,雷电这一自然现象已基本上被人们了解。但是我们应当在了解雷电的基础上,做到控制雷电并使之为人类服务。怎样才能利用雷电呢?

  一提起利用雷电,我们就会联想到打雷下雨时雷声隆隆、电光闪闪的壮观景象。大家一定会认为闪电可以释放出大量的能量,并企图利用闪电的能量。但是,利用闪电的能量有一个困难,就是闪电不能按人们的希望在一定的时刻发生。换句话说,就是闪电不易控制。另外,虽然闪电是最常见的自然现象,但是据统计,每年在每平方公里面积上平均只有一两次闪电。雷雨云单体的尺度从一公里至十公里,所以各次闪电都隔着很大的距离。有人测量并统计过,在强雷雨时闪电之间的平均距离是2.4公里。在弱雷雨时闪电之间的平均距离是3.7公里。

  如果竖立一根很高的铁杆引雷,雷击的次数要多些,但是闪电击中铁杆的次数仍不很多。有人统计过,在一个雷雨季节,雷电击中高400—800米的避雷针的次数也不过20次。

  很早就有人做过利用闪电制造化肥,肥沃土地的实验。我们知道,氮和氧是空气的主要成分。氮是一种惰性气体,在平常的温度下,它不易与氧化合,但是当温度很高时,它们就能化合成二氧化氮。

  如果我们有兴趣,可以做一个简单的实验:

  用一个封闭的玻璃瓶,里面充满空气并插上电极。通电时,电极间就有耀眼的火花闪耀。火花之中,慢慢地有黄色的氮气燃烧的火焰出现。过一会儿,原来无色的空气会变成红棕色,把瓶子打开,迎面就有一股令人窒息的气味,这就是二氧化氮。如果往瓶子里倒些水,摇晃几下,红棕色的气体马上消失,二氧化氮溶解于水变成硝酸。

  自然界的闪电火花有几公里长,温度很高,一定有不少氮和氧化合生成二氧化氮。闪电时生成的二氧化氮溶解在雨水里变成浓度很低的硝酸。它一落到土壤中,马上和其它物质化合,变成硝石。硝石是很好的化肥。有人计算过每年每平方公里的土地上有100克到l000克闪电形成的化肥进入土壤。

  人工闪电制肥实验的作法有很多,这里只举一个例子。有人在田野里竖立三根杆子(制肥器),一般是木杆,杆高约20米,杆距120米,杆子顶部装有金属接闪器,用金属导线从接闪器一直引到地下埋入土中。建立后,曾进行了两次雷击实验。在每次雷击后对实验地段附近地区的雨水及土壤进行化学分析,测量其中硝酸态氮含量的增减。第一次雷击强度较小,比较明显的范围半径约15米,有效面积约1亩左右。经过土壤分析。结果是约增氮1.88斤至2斤,相当于硫酸铵9.4斤/亩至10斤/亩。第二次雷雨强度较大,以实验地点为中心50米半径范围内,平均每亩增加2.7公斤,相当于硫酸铵13.55公斤。

  从以上实验可以看到,雷电确实起到了把空气里的氮“固定”到土壤里去的作用。更有趣的是,有人为了验证人工闪电制肥实验的效果,在实验室里用人工闪电做了实验。结果,经过闪电处理的豌豆比未处理的提早分枝,分枝数目也有增加,开花期也提早十天左右;处理过的玉米抽穗提早了七天;处理过的白菜增产15—20%,证明闪电对农作物确有一定好处。

  虽然这些数字只是从次数不多的试验中分析化验的结果,但是它可以直观地说明,闪电可以增加土壤里的氮肥,对农作物的生长有一定好处。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条