1) homogeneous state-vector equation
齐次状态向量方程
1.
To simplify the solution of the homogeneous state-vector equation of electromagneto-thermoelastic shell,the non-homogeneous state-vector equation was firstly derived from the generalized H-R variational formulation for electromagneto-thermoelastic material.
为简化求解电磁热弹性壳齐次状态向量方程的方法,先通过电磁热弹性材料广义的H-R变分原理推导了非齐次的状态向量方程,进一步考虑热平衡方程与导热方程中变量的对偶关系,通过增加方程的维数,将非齐次方程转化为能独立求解的齐次方程。
2) Non-homogeneous state-vector equation
非齐次状态向量方程
3) homogeneous state equation
齐次状态方程
1.
Based upon piezothermoelastic material governing equations, the homogeneous state equation for the mechanical, electric, thermal coupling problem of piezothermoelastic materials is derived by means of reforming the constitutive equations of piezothermoelastic materials as well as combining the piezothermoelastic material thermal equilibrium equations.
根据压电热弹性材料的控制方程和热传导关系,重构压电热弹性材料的本构关系,通过新本构关系并结合压电热弹性材料热平衡方程,得出压电热弹性材料机-电-热耦合问题的齐次状态方程。
2.
By using the dimensional expanding,the non-homogeneous state equation which is established for composite laminates with clamped edges is converted into homogeneous equation.
基于含固支边层合板的非齐次状态方程,应用增维方法,建立了齐次状态方程,给出了静力问题的解析解。
4) non-homogeneous state equation
非齐次状态方程
1.
By using the dimensional expanding,the non-homogeneous state equation which is established for composite laminates with clamped edges is converted into homogeneous equation.
基于含固支边层合板的非齐次状态方程,应用增维方法,建立了齐次状态方程,给出了静力问题的解析解。
2.
Firstly, the non-homogeneous state equation of piezoelectric materials was derived simply from H-R(Hellinger-Reissner) mixed variational principle in this paper.
首先由H-R(Hellinger-Reissner)变分原理简要地推导了压电材料的非齐次状态方程,然后通过引入边界应力函数,建立了含固支边压电层合板的非齐次状态方程,最后采用增维方法将非齐次状态方程转化成齐次状态方程。
5) homogeneous state equation
齐次状态方程式
补充资料:二阶线性齐次微分方程
二阶线性微分方程的一般形式为
ay"+by'+cy=f(1)
其中系数abc及f是自变量x的函数或是常数。函数f称为函数的自由项。若f≡0,则方程(1)变为
ay"+by'+cy=0(2)
称为二阶线性齐次微分方程,而方程(1)称为二阶线性非齐次微分方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条