1) Wigner-Ville distribution
Wigner-Ville分布
1.
Time frequency-based independent component analysis for elimination of cross-terms in Wigner-Ville distribution;
基于时频独立分量分析的Wigner-Ville分布交叉项消除法
2.
Research on identifying method of the Wigner-Ville distribution to crossing item;
Wigner-Ville分布交叉项识别方法研究
3.
Suppressing crossterms of Wigner-Ville distribution based on empirical mode decomposition;
基于经验模式分解的Wigner-Ville分布交叉项抑制方法
2) WVD
Wigner-Ville分布
1.
Time-frequency distribution characteristics of Wigner-Ville distribution(WVD) and Choi-Williams distribution(CWD) are discussed,both of which are members of the Cohen s class.
分析了2种Cohen类时频分布Wigner-Ville分布(WVD)及Choi-Williams分布(CWD)的时频特性。
2.
Some typical methods of extracting the in-pulse features of radar signal such as wavelet transformation and WVD were compared.
通过对小波变换法、Wigner-Ville分布等典型雷达信号脉内特征提取方法优缺点的分析,提出了一种将小波变换法和Wigner-Ville分布提取的结果进行截断综合的综合提取算法,实现了雷达信号的脉内特征准确提取。
3.
The instantaneous frequency spectrum of the impulse radio signal is represented by HHT,and which is calibrate its fidelity compared with the best existing methods,the wavelet analysis and Wigner-Ville distribution(WVD).
通过HHT可以得到冲击无线电信号的时频谱,并与传统的小波时频谱和Wigner-Ville分布进行了比较。
3) Wigner-Ville Distribution(WVD)
Wigner-Ville分布(WVD)
4) pseudo-Wigner-ville distribution
伪Wigner-ville分布
1.
In the light of pseudo-Wigner-ville distribution and bispectrum estimation analysis, the feature chart of fault signals is established.
利用伪Wigner-ville分布和双谱估计可绘出滚动轴承故障信号的特征图谱。
5) cross wigner-ville distribution
互Wigner-Ville分布
1.
This paper presents an instantaneous frequency iterative estimation based on the cross Wigner-Ville distribution(XWVD).
提出一种基于互Wigner-Ville分布(XWVD)的瞬时频率迭代估计方法。
6) smoothed pseudo Wigner-Ville distribution
平滑伪Wigner-Ville分布
1.
The theory of Smoothed Pseudo Wigner-Ville distribution(SPWD) and the relationship between Cohen’s class and SPWD are introduced, and then the discrete form of SPWD is presented.
介绍了平滑伪Wigner-Ville分布(SPWD)的基本原理,并说明了Cohen类时频分布和SPWD之间的关系,给出了SPWD的离散形式。
补充资料:Wigner rule
分子式:
CAS号:
性质:又称维格纳法则。在处于激发态的原子或分子与另一个处于基态的原子或分子之间发生电子能量转移时,该体系的总自旋角动量(矢量)应当保持不变。
CAS号:
性质:又称维格纳法则。在处于激发态的原子或分子与另一个处于基态的原子或分子之间发生电子能量转移时,该体系的总自旋角动量(矢量)应当保持不变。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条