说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 遍历算法
1)  traversal algorithm
遍历算法
1.
This paper proposes a way to create topology based on relevancy and analyze topology using traversal algorithm under ArcGIS.
在ArcGIS环境下,提出了一种基于关联关系的拓扑结构的建立方法,并采用遍历算法进行拓扑分析。
2)  searching algorithm
遍历算法
1.
3D fusion image can be reconstructed by way of surface rendering, which applies a searching algorithm of volume data.
融合图像的3D(three dimensional)重建采用表面绘制方式,所用的一种体数据遍历算法,既提高计算效果,又能进行真实感曲面的显示,并可实现对感兴趣区域(Region of interest, ROI)的分割提取、三维重建和显示,提高医学诊断的准确性和可靠性。
3)  graph traversal algorithm
图遍历算法
4)  Face algorithm
面遍历算法
5)  traversal tree-algorithm
遍历树算法
6)  "spread all over vertices"algorithm
点遍历算法
补充资料:Birkhoff遍历定理


Birkhoff遍历定理
Bilkhoff eigodic theorem

  Bi浅h甫遍历定理[Bi血h成e吧诚c the峨m;血p以,峥a邓门口的.。旧T.娜限Ma】 遍历理论(erg曲c theory)中最重要定理之一关于具有。有限测度拜的空间X上的自同态T,Birkhoff的遍历定理是指,对于任意函数f任L,(x,群),极限 lrm生咬,了(:*二、一云二、 n神的n人二万(时卿于扫慎(tim“avera罗)或毋热道于挣填(avera罗alonga trajectory))fL乎处处存在(对几乎所有x任x).此外,厂。Ll(x,拌);且若拜(X)<的,则有 夕“一夕d卜关于具有,有限测度料的空间X上的可测流(measura-ble flow)毛不},Birkhoff的遍历定理说,对于任意函数f‘LI(x,时,极限 、十矛(:·)‘一五·,几乎处处存在,且和了有相同的性质. Birkhoff的定理首先由G.D.Birkhoff提出和证明(【1」).接着有各种不同的改进和推广(有一些定理,它们包含Birkho任定理作为特例,还包含j些在概率沦中被称为遍历定理的稍许不同类型的命题(见遍历定理)(ergxlicthcorem);此外,还有关于变换半群的更一般的遍历定理([2】)).Birkhoff的遍历定理及其推广,由于它们考虑的是沿着几乎每一个别轨道所取平均的存在性,因此被称为个体渗巧牢浮(individuale粤心ic‘heorems),以区别于苹甘穆事牢浮(s‘a‘15‘i“1 er网ic‘heorems)一von Neumann澳巧宇浮(von Neumann ergodie‘he-。rem)及其推广.(在非俄文文献中,名词“逐点遍历定理”经常用来强调,平均是几乎处处收敛的.)
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条