1) neutral lead mode
中性点引出方式
1.
The paper put forward 2 kinds of new disposition scheme for neutral lead mode and main protection.
文中提出了2种新型中性点引出方式及主保护方案的配置,经对东方电机股份有限公司1000MW汽轮发电机内部短路故障进行分析计算,发现其保护性能均优于传统的发电机中性点引出方式及主保护配置方案。
2) neutral lead
中性点引出线
3) neutral point grounding mode
中性点接地方式
1.
The feasibility and reliability are researched in this paper,and the neutral point grounding mode of the cable line is optimized based on the simulations.
在仿真计算的基础上对线路运行的可行性与可靠性进行了验证,并通过对各种运行方式及故障情况的仿真分析,对电缆供电线路的中性点接地方式做了优化选择。
2.
The selection of neutral point grounding modes of 20kV distribution network is an important tech- nique issue.
20 kV配电网中性点接地方式的选择是重要的技术问题。
4) neutral grounding
中性点接地方式
1.
The rational selection of generator neutral grounding scheme is also discussed in accordance with power system and generator.
分析了高阻接地与消弧线圈接地这两种接地方式的特点,并结合其在电网中的应用情况以及定子接地保护的配置,讨论如何根据系统和发电机本身需要合理地选择发电机中性点接地方式。
5) neutral grounding mode
中性点接地方式
1.
The neutral grounding mode of the power system is a comprehensive technical problem which is associated with not only power system reliability, insulation coordination, electromagnetic interference, but also personal safety, etc.
近年来,随着城区10kV 电网的迅猛发展,特别是电缆线路的大量采用,使得系统电容电流大幅度增加,弧光接地和谐振接地过电压引起的事故还时有发生,城区配电网中性点接地方式存在的问题还比较突出,特别是在限制过电压、补偿电网单相接地电容电流以及继电保护等方面还存在问题。
2.
It is studied that the occurrence and amplitude of over-voltage is related to the neutral grounding mode.
研究表明,弧光接地过电压的产生和幅值与中性点接地方式密切相关。
3.
The cause of blackout and its influencing factors such as neutral grounding mode,overvoltage protection of current cut-off,operation conditions,low voltage side connection mode etc are analyzed.
通过对某大型化工企业一次大面积停电事故的事故现象、现场情况、事故波形的分析和讨论,阐明了其电气接线、运行管理、故障过程均具有典型性,分析了事故原因和中性点接地方式、截流过电压保护、运行环境、低压接线方式等对该事故的影响,并为化工、冶金类企业的供电安全提出了建议。
6) neutral operation method
中性点运行方式
1.
Simulation indicates that new neutral operation method can improve lightning withstand level and decrease trip-out rate of grids.
通过对重庆某坝变电站35 kV电网三相对地电容不平衡问题的分析,得出其带消弧线圈运行时,消弧线圈的整定不能同时兼顾三相电压的平衡和单相接地时消弧线圈的消弧作用的结论;提出了山区35 kV电网新的中性点运行方式,即在系统正常运行时中性点不接地,在发生单相短路接地时中性点经消弧线圈接地,并对这种中性点新型运行方式的暂态过程进行了大量数值模拟计算,得出了暂态过程中过电压和冲击电流水平。
补充资料:电力系统中性点接地方式
电力系统中三相星形连接的发电机和变压器的中点称为电力系统的中性点,中性点接地方式分为两大类:有效接地和非有效接地。
有效接地 电力系统中全部或部分中性点直接接地或经小阻抗接地,因而从电力系统中任何一点向系统看入的零序电抗X0与正序电抗X1之比|X0/X1|≤3,零序电阻R0与正序电抗X1之比|R0/X1|≤1,则该系统被称为有效接地系统。当系统中发生单相接地故障时,故障点将经中性点接地支路形成回路,并有较大的故障电流流经故障回路,所以这种系统又称大接地电流系统。由于单相接地故障时有较大的故障电流,对电力系统本身和对邻近的通信线和信号线都会造成较大的危险和干扰,所以必须迅速切除故障部分,这样又会造成部分负荷的供电中断。另一方面,由于中性点有效接地,若系统中发生单相接地故障,非故障相的对地电压仍为相电压,因此对线路的绝缘水平的要求相对较低。
非有效接地 电力系统中所有中性点均不接地,或部分经过高阻抗接地,或经消弧线圈接地,因而从电力系统的任一点向系统看入的零序电抗X0与正序电抗X1之比|X0/X1|>3,零序电阻R0与X1之比|R0/X1|>1,则该系统被称为非有效接地系统。当系统中发生单相接地时,将只有很小的故障电流,所以又称为小接地电流系统。非有效接地系统又分为中性点不接地系统和中性点谐振接地系统两种。
中性点不接地系统中,所有中性点均不接地或部分经高阻抗接地。系统中若发生单相接地故障,经线路对地电容形成回路,因而流经故障回路的电流是电容性电流Ig。当网络电压等级低,规模小,Ig一般都很小,所以若故障点形成开放性电弧,常可自行熄灭;即使是金属性单相接地故障,由于故障并未流经短路电流,三相仍可维持平衡对称,所以系统仍可继续运行一段时间。
当网络电压等级高,网络规模扩大,接地电容性电流增大,并且随电力系统的运行方式(包括接地和负荷水平)的改变而变化,故障点开放电弧不易自行熄灭,需要在系统中部分中性点装设消弧线圈,此时即形成中性谐振接地系统。消弧线圈是德国彼得森教授1916年首创,故又名彼得森线圈。它是一个有很多抽头的线性电感。当系统中发生单相接地时,故障点原来的电容性电流被消弧线圈中电感性电流所补偿。当消弧线圈正确调谐时,也即电感电流与电容电流数值接近,故障点电流降至较低的数值,使电弧容易熄灭;在电弧熄灭以后,由于消弧线圈的存在,故障点弧道两端的电压上升缓慢,使电弧不易重燃,因而起到"消弧"作用。线圈的多抽头使得电感量可根据电容电流的大小而进行调节,达到正确调谐。
非有效接地方式最主要的优点在于,这种系统中的单相接地故障能瞬时自动消除,或在系统继续运行一段时间后,在有准备的情况下(如负荷转移后)切除,因而减少了停电次数,提高了供电可靠性。另外,由于接地电流小,系统故障时,非有效接地系统中输电线路对邻近的通信线路的干扰也小,有时还可以降低输电线路的造价。
但是,非有效接地系统要带单相接地故障运行,最大运行电压为线电压,暂态过电压也较高,使网络绝缘水平相应增高。超高压系统中各类绝缘的费用在总造价中占的比重很大,因而采用非有效接地方式是不经济的。超高压系统中输电线路长,网络大,采用消弧线圈补偿后,故障点的电流仍难以限制到较低值,因而采用非有效接地方式在技术上也不合理。即使在一般高压系统中,网络的发展同样也会使故障点电流增大,因而非有效接地方式对系统发展有一定的限制。另外,非有效接地系统中发生单相接地故障时,故障电流分布在全网内,查找故障点很麻烦。这也是继电保护专业的一个传统难题。
由此可见,电力系统中性点接地方式的选择是一个涉及到系统绝缘水平、供电可靠性、继电保护、通信危险影响和干扰影响、断路器容量、避雷器配置等影响面较大的技术经济问题。综合各种利弊,考虑到设备制造规范的统一性,中国有关规程中明确规定:110 千伏及以上电网采用中性点有效接地方式;60千伏及以下电网采用中性点非有效接地方式;20~60千伏电网接地电流大于10安、 6~10千伏电网接地电流大于20安时,都应采用中性点经消弧线圈的谐振接地方式。
有效接地 电力系统中全部或部分中性点直接接地或经小阻抗接地,因而从电力系统中任何一点向系统看入的零序电抗X0与正序电抗X1之比|X0/X1|≤3,零序电阻R0与正序电抗X1之比|R0/X1|≤1,则该系统被称为有效接地系统。当系统中发生单相接地故障时,故障点将经中性点接地支路形成回路,并有较大的故障电流流经故障回路,所以这种系统又称大接地电流系统。由于单相接地故障时有较大的故障电流,对电力系统本身和对邻近的通信线和信号线都会造成较大的危险和干扰,所以必须迅速切除故障部分,这样又会造成部分负荷的供电中断。另一方面,由于中性点有效接地,若系统中发生单相接地故障,非故障相的对地电压仍为相电压,因此对线路的绝缘水平的要求相对较低。
非有效接地 电力系统中所有中性点均不接地,或部分经过高阻抗接地,或经消弧线圈接地,因而从电力系统的任一点向系统看入的零序电抗X0与正序电抗X1之比|X0/X1|>3,零序电阻R0与X1之比|R0/X1|>1,则该系统被称为非有效接地系统。当系统中发生单相接地时,将只有很小的故障电流,所以又称为小接地电流系统。非有效接地系统又分为中性点不接地系统和中性点谐振接地系统两种。
中性点不接地系统中,所有中性点均不接地或部分经高阻抗接地。系统中若发生单相接地故障,经线路对地电容形成回路,因而流经故障回路的电流是电容性电流Ig。当网络电压等级低,规模小,Ig一般都很小,所以若故障点形成开放性电弧,常可自行熄灭;即使是金属性单相接地故障,由于故障并未流经短路电流,三相仍可维持平衡对称,所以系统仍可继续运行一段时间。
当网络电压等级高,网络规模扩大,接地电容性电流增大,并且随电力系统的运行方式(包括接地和负荷水平)的改变而变化,故障点开放电弧不易自行熄灭,需要在系统中部分中性点装设消弧线圈,此时即形成中性谐振接地系统。消弧线圈是德国彼得森教授1916年首创,故又名彼得森线圈。它是一个有很多抽头的线性电感。当系统中发生单相接地时,故障点原来的电容性电流被消弧线圈中电感性电流所补偿。当消弧线圈正确调谐时,也即电感电流与电容电流数值接近,故障点电流降至较低的数值,使电弧容易熄灭;在电弧熄灭以后,由于消弧线圈的存在,故障点弧道两端的电压上升缓慢,使电弧不易重燃,因而起到"消弧"作用。线圈的多抽头使得电感量可根据电容电流的大小而进行调节,达到正确调谐。
非有效接地方式最主要的优点在于,这种系统中的单相接地故障能瞬时自动消除,或在系统继续运行一段时间后,在有准备的情况下(如负荷转移后)切除,因而减少了停电次数,提高了供电可靠性。另外,由于接地电流小,系统故障时,非有效接地系统中输电线路对邻近的通信线路的干扰也小,有时还可以降低输电线路的造价。
但是,非有效接地系统要带单相接地故障运行,最大运行电压为线电压,暂态过电压也较高,使网络绝缘水平相应增高。超高压系统中各类绝缘的费用在总造价中占的比重很大,因而采用非有效接地方式是不经济的。超高压系统中输电线路长,网络大,采用消弧线圈补偿后,故障点的电流仍难以限制到较低值,因而采用非有效接地方式在技术上也不合理。即使在一般高压系统中,网络的发展同样也会使故障点电流增大,因而非有效接地方式对系统发展有一定的限制。另外,非有效接地系统中发生单相接地故障时,故障电流分布在全网内,查找故障点很麻烦。这也是继电保护专业的一个传统难题。
由此可见,电力系统中性点接地方式的选择是一个涉及到系统绝缘水平、供电可靠性、继电保护、通信危险影响和干扰影响、断路器容量、避雷器配置等影响面较大的技术经济问题。综合各种利弊,考虑到设备制造规范的统一性,中国有关规程中明确规定:110 千伏及以上电网采用中性点有效接地方式;60千伏及以下电网采用中性点非有效接地方式;20~60千伏电网接地电流大于10安、 6~10千伏电网接地电流大于20安时,都应采用中性点经消弧线圈的谐振接地方式。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条