说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 拓扑同胚变换
1)  topological homeomorphism
拓扑同胚变换
1.
The input-output data were firstly changed into by using topological homeomorphism,then a series of predictive models were obtained by polynomial approach for nonlinear modeling.
将有界输入输出数据的取值域通过拓扑同胚变换到[0,1]范围内,用多项式逼近方法建立非线性系统的多个不同预测步长的预测模型,最小化目标函数求得预测控制律,并通过误差修正去除有可能存在的模型失配对系统的影响,得到了一种非线性系统的预测控制算法。
2)  data topological homeomorphism transform
数据拓扑同胚变换
3)  topological mapping
拓扑同胚
4)  topological transformation
拓扑变换
1.
Their topological transformation method is studied,and geometrical models for four topological structures of 6-PSS parallel mechanisms are given,which provide a theoretical basis and innovation method for the study of parallel mechanisms.
引入拓扑学理论,定义了并联机构的拓扑空间,分析了并联机构的拓扑特征;研究了并联机构的拓扑变换方法,给出了6-PSS并联机构的4种拓扑结构的几何模型,为并联机构构型的研究提供了理论基础和创新方法。
2.
A decoupling method of the fuzzy relational systems with typical topological transformations has been discussed.
针对模糊关系系统的解耦问题,提出了可解耦的充分条件及构造模糊串联补偿解耦器的具体方法;在此基础上,进一步讨论了在一类拓扑变换下模糊关系系统的解耦方法。
3.
A new technique for the topological transformation of knowledge models is introduced which can make probleim easier to solve and slinplify the problem-solving process.
综述了知识表示方法中现行的变换技术,指出了其局限性,并提出了一种既便于问题求解,又易于问题求解的新变换技术──知识模型的拓扑变换。
5)  topological maps
拓扑变换
1.
The applications of some topological maps to solve problems of location between irregular surfaces in descriptive geometry are discussed with the examples.
对拓扑变换的作图原理进行了论述 ,对三种拓扑变换方法给出了证明 ,并举例说明几种变换方法在解决画法几何中不规则曲面间定位问题中的应
2.
When making topological maps with projection between two spaces,the center projection,parallel projection and radius projection are more used,while the drawing of topological transformation by the plane and cylinder is less used.
在采用投射法建立两空间的拓扑对应时,以中心投射、平行投射、辐向投射较多,而借助于平面、柱面折射进行拓扑变换的作图极少。
6)  Topology transform
拓扑变换
补充资料:拓扑结构(拓扑)


拓扑结构(拓扑)
topologies 1 structure (topology)

拓扑结构(拓扑)【t哪d哈eal structure(to和如罗);TO-no“orHtlec~cTpyKTypa」,开拓扑(oPen to和fogy),相应地,闭拓扑(closed topofogy) 集合X的一个子集族必(相应地居),满足下述J胜质: 1.集合x,以及空集叻,都是族。(相应地容)的元素. 2。(相应地2劝.。中有限个元素的交集(相应地,居中有限个元素的并集),以及已中任意多个元素的并集(相应地,居中任意多个元素的交集),都是该族中的元素. 在集合X上引进或定义了拓扑结构(简称拓扑),该集合就称为拓扑空间(topological sPace),其夕。素称为.l5(points),族份(相应地居)中元素称为这个拓扑空问的开(open)(相应地,闭(closed))集. 若X的子集族份或莎之一已经定义,并满足性质l及2。。(或相应地l及2衬,则另一个族可以对偶地定义为第一个集族中元素的补集族. fl .C .A二eKeaH及pos撰[补注1亦见拓扑学(zopolo群);拓扑空l’ed(toPo1O廖-c:,l印aee);一般拓扑学(general toPO】ogy).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条