说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 多目标进化算法
1)  multi-objective evolutionary algorithm
多目标进化算法
1.
Research of quantum-inspired multi-objective evolutionary algorithm;
量子多目标进化算法研究
2.
A Multi-Objective Evolutionary Algorithm Based on Spatial Distance
基于空间距离的多目标进化算法
3.
Mechanism of social welfare distribution based on multi-objective evolutionary algorithm in electricity market
基于多目标进化算法的电力市场福利分配研究
2)  Multi-objective evolutionary algorithms
多目标进化算法
1.
Piezoelectric transducer optimized design based on Multi-objective evolutionary algorithms;
基于多目标进化算法的压电换能器优化设计
2.
The simultaneous localization and mapping problem with evolutionary algorithms is translated to a multi-objective optimization problem since it inherently possesses of multi-objective characters,and in order to efficiently solve the simultaneous localization and mapping problem with multi-objective evolutionary algorithms,a local searcher with immunity is constructed.
为了有效地提高基于多目标进化算法的移动机器人并发定位与建图方法的效率,提出了结合免疫机制的局部搜索方法。
3)  multi-objective evolutionary algorithm(MOEA)
多目标进化算法
1.
This paper analyzes the characteristics and shortcomings of Multi-Objective Evolutionary Algorithm(MOEA) methods,and introduces a method to evaluate the diversity of non-dominated solutions in new coordinates,which avoids the influence because of distinct extent of convergence to the diversity evaluation,and the new objective space is divided into some equal regions.
分析现存多目标进化算法分布度评价方法的特点和不足,提出一种在新的坐标下对解集进行分布度评价的方法。
2.
The key of Multi-Objective Evolutionary Algorithm(MOEA) is how to keep diversity of solutions.
多目标进化算法(MOEA)的一个关键就是保持解的分布度,提出了一种用最小生成树的边的权值来表示个体聚集距离的方法,并且对NSGA-2的交叉算子和变异率进行了改进。
4)  MOEA
多目标进化算法
1.
Searching for Robust Pareto Optimal Solutions for MOPs with MOEA
多目标进化算法搜索MOPs的鲁棒Pareto最优解
2.
Many Multi-Objective Evolutionary Algorithms (MOEAs are proposed at present.
进化算法具有本质上并行、不需要求导或其他辅助知识、一次运行产生多个解和简单易于实现等优点,被视为求解多目标优化问题的有效方法,目前已经形成了各种不同的多目标进化算法(MOEA)。
3.
In this paper,a Multi-Objective Evolutionary Algorithm based on Pareto optimality and Limited Elitist(LEMOEA) is proposed which is based on NSGA-II.
在NSGA-II算法的基础上,提出了一种基于Pareto最优和限制精英的多目标进化算法(LEMOEA)。
5)  multiobjective evolutionary algorithm
多目标进化算法
1.
Mixed H_2/H_∞ optimal control based on multiobjective evolutionary algorithm;
基于多目标进化算法的混合H_2/H_∞优化控制
2.
Multiobjective Evolutionary Algorithms and Their Applications;
多目标进化算法及其应用研究
3.
For separating source signals efficiently, a nonlinear blind separation algorithm based on specific-designed multiobjective evolutionary algorithm is proposed.
设计了多目标进化算法来求解代价函数的全局最优解,提出了非线性盲源分离的多目标进化算法
6)  Multi-objective Optimization(CDE)
多目标进化算法(CDE)
补充资料:进化论算法
分子式:
CAS号:

性质:进化首先是生物学的概念。根据达尔文“生物进化论”的观点:生物的发展和演变是根据自然选择的方式进行。生物机能和形态的变化,可从它所处的环境中寻找解释。生物的进化过程也许完全不是随机的,高级生物的进化过程很可能是“合情的产生与检验”的过程,即也许自然界掌握着一种很高明的“自动程序设计”方法进行遗传“程序”的书写。模仿上述生物进化论所形成的应用算法称为进化论算法。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条