1) the principle of one by one revision of two sides
二边逐次修正法
1.
The paper utilizes the matrix turning to realize that using the principle of one by one revision of two sides to obtain the best Hamilton Circle.
利用矩阵翻转实现二边逐次修正法求最佳哈密尔顿圈(H圈)。
2) successive revision method
逐次修正法
3) 2Opt
二边修正法
4) Secondary correction control law
二次修正法
5) modified succesive overrelaxation method
修正逐次超松弛法
6) successive correction method
逐次校正法
补充资料:二边
【二边】
(名数)断常之二边(参见:也。见二见)。【又】一、增益边,因缘所生之法,若分别推求,则本无自性,众生不之了固执之以为有,此名增益边。二、损灭边,因缘所生之法,原无自性,然非无因果之功能,众生不之了,拨无之以为空,此名损灭边。见摄大乘论释一。【又】一、有边,边者边际,世间一切之事物必假众缘之和合而生,无有自性,顾虽无自性,然不得谓为无,此名有边。二、无边,世间一切之事物,既无有自性,若无自性,则一切法皆空,不得谓为有,此名无边见中论四。
(名数)断常之二边(参见:也。见二见)。【又】一、增益边,因缘所生之法,若分别推求,则本无自性,众生不之了固执之以为有,此名增益边。二、损灭边,因缘所生之法,原无自性,然非无因果之功能,众生不之了,拨无之以为空,此名损灭边。见摄大乘论释一。【又】一、有边,边者边际,世间一切之事物必假众缘之和合而生,无有自性,顾虽无自性,然不得谓为无,此名有边。二、无边,世间一切之事物,既无有自性,若无自性,则一切法皆空,不得谓为有,此名无边见中论四。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条