1) countable tightness
可数紧度
2) relative countable tightness
相对可数紧度
1.
To obtain the function and imbedding properties about relative countable tightness spaces,in this paper the question whether the relative countable tightness space can be adversely preserved by a closed map is studied by means of function and imbedding theories.
为了得到相对可数紧度空间的映射及嵌入性质,借助映射方法和紧化理论讨论了相对可数紧度空间被闭映射逆保持问题及嵌入紧空间问题,得到了相对可数紧度空间被闭映射逆保持的一个充分条件、局部紧的可数紧度空间可嵌入紧空间的几个充分条件以及某一类局部紧空间在任意紧化中不具有可数紧度等结果。
3) countable compact set
可数紧集
4) countably metacompact
可数亚紧
1.
It follows from one of these characterizations that the pseudo open and compact image of a countably paracompact space is a countably metacompact space.
利用半开复盖、定向开复盖、单调递增开复盖、点态W 加细和垫状加细等刻画了可数亚紧性 。
2.
Japanese mathematician Nobuyuki Kemoto proved that the product of two ordinals is hereditarily countably metacompact in 1996.
日本数学家NobuyukiKemoto在 1996年论证了两个序数的乘积是遗传可数亚紧空间 。
5) countable compactness
可数紧
1.
With inclusion degree to distinguish the covering strata,it establishes the property of Lindelf and countable compactness in fts,and discusses their primary properties.
用包含度区分覆盖层次,在不分明拓扑(fts)中建立Lindelf和可数紧性,并讨论其主要性质。
6) countably paracompact
可数仿紧
1.
The present article proves the following results:(1) if X=∏α∈ΛXα is |Λ|-para-closed spaces,then X is meso para-compact if and only if F∈[Λ]<ω,∏α∈FXαis countably paracompact;(2) if X=∏i∈ωXi is countably paracompact,then the following three conditions is equal in value;X is meso compact;F∈[Λ]<ω,∏α∈FXαis meso compact;n∈ω,∏i<nXi is meso compact.
主要证明了如下结果:(1)如果X=∏α∈ΛXα是|Λ|-仿紧空间,则X是meso紧的当且仅当F∈[Λ]<ω,∏α∈FXα是meso紧的;(2)如果X=∏i∈ωXi是可数仿紧的,则下列三条件等价:X是meso紧的;F∈[Λ]<ω,∏α∈FXα是meso紧的;n∈ω,∏i≤n Xi是meso紧的。
2.
If each Xα is a normal countably paracompact space,then X is a countably paracompact space.
得到了如下结果:设X是逆系统{Xα,παβ,Λ}的逆极限,|Λ|=λ,假设每个映射πα∶X→Xα是开的且到上的,X是λ-仿紧,每个Xα是正规可数仿紧的,则X是正规可数仿紧的。
补充资料:可数紧空间
可数紧空间
countably - compact: space
可数紧空间{阴ntably一~padsP拟;一~-毗盯拼犯l脚叫犯1.01 一个拓扑空间从其任意可数开覆盖中均可选出有限子覆盖.M”.BOmlcx。‘KH认撰[补注1
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条