1) nonconforming element
非协调元
1.
By using nonconforming element and Bramble-Hilbert-Xu Lemma, Laplace approximating eigenvalue is given by the means of asymptotic expansion and the main error terms are presented ,too.
利用Bramble Hilbert Xu引理对Laplace特征值用一个非协调元作对称展开,给出该单元在研究Laplace特征值问题时的误差主项,并进一步给出外推结果,最后给出数值验证。
2.
We expand eigenvalue of possion equqtion using Q1rot nonconforming element.
对pisson方程的特征值采用Q_1~(rot)非协调元进行展开,得出了特征值更近的上界,当选用方行Q_1~(rot)元时得到了整齐的结果,然后在误差展开式的基础上进行外推,把特征值的精度从二阶提高到四阶。
3.
The domain decomposition method for the lowest order Raviart Thomas triangular mixed element method and projection nonconforming element method with non quasi uniform partition is given for nonselfadjoint and indefinite second order elliptic problem under minimal regularity assumption,meanwhile an optimal convergence rate is obtained for GMRES method.
对两阶非对称不定椭圆边值问题 ,在最小正则性假设下 ,对非拟一致网格 ,讨论了最低阶Raviart Thomas三角形元的混合元方法和投影非协调元方法的区域分解法 ,并得到了 GMRES方法收敛率的最优估计 。
2) incompatible element
非协调元
1.
Investigation of internal parameter type incompatible elements with rotational degrees of freedom;
带转动自由度的内参型非协调元研究
2.
Contra-solution of solving displacement basic formulae of incompatible element;
非协调元位移基本项的逆解法
3.
Annotation about inner degrees of freedom of incompatible element;
关于非协调元内自由度的注记
3) nonconforming finite element
非协调元
1.
The second order elliptic problem is studied by using conforming finite element and nonconforming finite element in the different parts of the area respectively.
在区域的两个不同部分分别采用协调元和非协调元来研究二阶椭圆问题。
2.
The paper mainly discussed finite element methods for a Navier-Stokes equation and a class of rectangular nonconforming finite element was presented that can be applied.
讨论了Navier-Stokes方程的一类矩形非协调元方法。
3.
By using the special properties of the elementt,he optimal error estimates are obtained,which extends the application scope of nonconforming finite element.
利用该单元的特殊性质,导出了最优误差估计,扩展了其非协调元的应用范围。
6) conforming and nonconforming elements
协调及非协调元
补充资料:非协调连续统理论
见理性力学。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条