说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 幅度差能量函数
1)  magnitude difference energy function
幅度差能量函数
2)  AMDF
平均幅度差函数
1.
After RCS periodicity signature of warhead analyzed,the weaknesses of estimation algorithms in frequency domain are pointed out and a new algorithm is proposed,which combines circle autocorrelation(CAUTOC) with circle average magnitude difference function(CAMDF).
通过合成循环平均幅度差函数(CAMDF)和循环自相关函数(CAUTOC),有效克服了传统频域估计方法的不足,且具有优良的抗噪性能。
2.
According to the conventional speech-generating mode AMDF, the paper refers to a new speech pitch determination algorithm which bases on AMDF.
文章在已经被广泛运用的平均幅度差函数(AMDF)的基础上,针对其通过求取“第一谷值点”会产生误差,而求取“最小谷值点”会遇到周期增倍等问题,提出了改进的AMDF方法,它通过简单的预测谷值范围、循环AMDF和线性变换等步骤实现了精确的基音检测。
3)  average magnitude difference function
平均幅度差函数
1.
Then,pitch periods of sonant frames are detected adopting the method of autocorrelation function weighted by the modified average magnitude difference function.
该方法利用线性预测分析和低通滤波器对含噪语音进行预处理,再采用改进的平均幅度差函数加权自相关函数的方法对浊音帧进行基音检测,对于清浊音过渡帧,则利用小波变换进行基音检测。
2.
Autocorrelation function,average magnitude difference function and wavelet transform methods are the classical pitch detection methods.
自相关函数法、平均幅度差函数法及小波变换法是经典的基音检测方法,本文简要分析了单独使用它们进行基音检测时存在的不足,提出了一种基于小波变换的加权自相关的检测方法。
4)  combined magnitude difference function
混合幅度差函数
1.
To reduce the halving and the doubling errors in pitch tracking,an algorithm based on a combined magnitude difference function is proposed in this paper.
为了减少基音周期提取中的倍频和半频错误,进行更准确的基音周期估计,提出一种基于混合幅度差函数的基音周期提取方法。
5)  Amplitude function
幅度函数
6)  circular average magnitude difference function
循环平均幅度差函数
补充资料:能量原理与能量法


能量原理与能量法
energy principles and energy methods

  nengliang yuanli yu nengliangfa能量原理与能量法(energy prineiple、and energy methods)根据能量来分析结构在外来作用下的反应的力学原理和方法。能量原理是力学中的机械能守恒定律或虚功原理在变形固体力学中的具体体现,它是能量法的理论基础,也是用能量法解题时必须满足的条件。这些条件是与平衡条件或位移协调条件等价的。能量原理和能量法与先进的计算技术相结合,显示出优越性。 应变能、余能和势能在单向应力状态下,弹性体的应变能密度(单位体积的应变能)怂可用一下式计算: ,‘一站O。凌它相当于图l中用阴影线表示的面积。另外,在单向应力状态下的余能(应力能)密度万可用下式计算: 万一俨:而它相当于图2中阴影部分的面积。由图1.21;r知 2,+万=JO‘’)。‘。~J茸祥一言一一£ d£ 图J应变能密度图2余能密度图3线弹性情尤下的应变能密度与余能密度由图3可知,线弹性体的余能密度与应变能密度在数值上相等。在简单应力状态下的应变能密度或余能密度经过总加后,可得到复杂应力状态下的应变能密度或余能密度。把它们在整个弹性体的体积内积分就得出整个弹性体的应变能或余能。对于线弹性体,应变能或余能可表示为位移或应力(内力)的二次式。弹性体的应变能与外力势能的总和称为总势能。外力势能在数值上等于各个外力在施力点位移上所做功的总和冠以负号。 能量原理在给定的外力作用下,在满足位移边界条件的所有各组位移中.实际存在的一组位移应使总势能为极值。对于稳定平衡状态,这个极值是极小值。因此,上述能量原理称为极小势能原理。它等价于平衡条件(含应力边界条件)。在满足平衡条件(含应力边界条件)的所有各组应力(内力)中,实际存在的一组应力‘内力)应使弹性体的余能为极值。对于稳定平衡状态,这个极值是极小值。因此,这个能量原理称为极小余能原理。它等价于位移协调条件。 上述两个能量原理实际上就是数学中求泛函极值的变分原理,应变能和余能分别是以位移或应力(内力夕为自变函数的泛函。所以能量原理也称变分原理,是工程力学的电要组成部分。在变分原理中,位移的变分就是虚位移,应力(内力)的变分就是虚应力(虚力)。因此,能量原理中的极小势能原理又相当于虚位移原理,极小余能原理又相当于虚应力(虚力)原理。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条