1) POMDP
部分可观测马氏决策过程
1.
Through combining Bayes statistical method and POMDP method using computer simulation,the qualities of possible decision makings in specific conditions were prediceed.
通过将贝叶斯统计方法和POMDP(部分可观测马氏决策过程)方法相结合,采用计算机模拟的方式,预测在给定条件下可能产生的各种作战决策的质量。
2) Part
部分
1.
A Counting Formula for the Partitions of n into Exactly 5 parts;
部分数为5的n-分拆的计数公式
2.
Knowledge again to the relations between of whole and part;
对整体和部分关系的再认识
3.
The whole is less than the addition of parts;
整体小于部分之和──一种不可忽视的系统功能
3) partial
部分
1.
Microanatomic study of the partial labyrinthectomy petrous apicectomy: transtentorial approach;
幕上下联合经部分迷路-岩尖入路的显微解剖研究
2.
Objective To Observe the influence of partially bone metabolic index,insulin shape growth factor-1(IGF-1) and bone density for2 type diabetic controls blood sugar before and after.
目的观察2型糖尿病患者血糖控制前后对部分骨代谢指标、胰岛素样生长因子-1(IGF-1)及骨密度的影响。
3.
Purpose:To evaluate the feasibility and clinical efficacy of retroperitoneoscopic nephron sparing surgery ,including tumor enucleation and partial nephrectomy , for the treatment of renal tumors.
目的 :探讨后腹腔镜肿瘤剜除术和肾部分切除术治疗肾脏肿瘤的应用价值。
4) partial oxidation
部分氧化
1.
Direct partial oxidation of methane to syngas by lattice oxygen of cerium oxide;
CeO_2中晶格氧直接部分氧化甲烷制取合成气的研究
2.
The Resistance of Carbon Deposition of Methane Partial Oxidation Catalyst:the DFT Study;
甲烷部分氧化催化剂抗积碳性能的DFT研究
3.
Progress in partial oxidation of methane to synthesis gas;
天然气甲烷部分氧化制合成气的研究进展
5) pontes
连接部分
1.
Effect of Assembly Stress on tensil strength of pontes;
铆钉的装配应力对连接部分拉伸强度的影响
2.
Effect of Temperature Stress of rivet on tensil strength of pontes;
铆钉的温度应力对连接部分拉伸强度的影响
6) partial-filling
部分充填
1.
Choice of coal mine partial-filling technology according to balance between mining and filling;
从采充均衡论煤矿部分充填开采模式的选择
2.
Because of relative high cost of traditional filling,a new concept of the partial-filling and three technical ways are put forward,including the technologies of partial paste filling in goaf,isolated section-grouting for the overburden bed.
针对传统充填开采成本相对偏高的问题,提出了部分充填开采的概念和3项部分充填开采技术,即采空区膏体条带充填技术、覆岩离层分区隔离注浆充填技术、条带开采冒落区注浆充填技术,分别对其技术原理进行了介绍。
参考词条
补充资料:马尔可夫决策过程
基于马尔可夫过程理论的随机动态系统的最优决策过程,英文缩写 MDP。马尔可夫决策过程是序贯决策的主要研究领域。它是马尔可夫过程与确定性的动态规划相结合的产物,故又称马尔可夫型随机动态规划,属于运筹学中数学规划的一个分支。马尔可夫决策过程是指决策者周期地或连续地观察具有马尔可夫性的随机动态系统,序贯地作出决策。即根据每个时刻观察到的状态,从可用的行动集合中选用一个行动作出决策,系统下一步(未来)的状态是随机的,并且其状态转移概率具有马尔可夫性。决策者根据新观察到的状态,再作新的决策,依此反复地进行。马尔可夫性是指一个随机过程未来发展的概率规律与观察之前的历史无关的性质。马尔可夫性又可简单叙述为状态转移概率的无后效性。状态转移概率具有马尔可夫性的随机过程即为马尔可夫过程。马尔可夫决策过程又可看作随机对策的特殊情形,在这种随机对策中对策的一方是无意志的。马尔可夫决策过程还可作为马尔可夫型随机最优控制,其决策变量就是控制变量。
发展概况 50年代R.贝尔曼研究动态规划时和L.S.沙普利研究随机对策时已出现马尔可夫决策过程的基本思想。R.A.霍华德(1960)和D.布莱克韦尔(1962)等人的研究工作奠定了马尔可夫决策过程的理论基础。1965年,布莱克韦尔关于一般状态空间的研究和E.B.丁金关于非时齐(非时间平稳性)的研究,推动了这一理论的发展。1960年以来,马尔可夫决策过程理论得到迅速发展,应用领域不断扩大。凡是以马尔可夫过程作为数学模型的问题,只要能引入决策和效用结构,均可应用这种理论。
数学描述 周期地进行观察的马尔可夫决策过程可用如下五元组来描述:{S,(A(i),i∈S,q,γ,V},其中S 为系统的状态空间(见状态空间法);A(i)为状态i(i∈S)的可用行动(措施,控制)集;q为时齐的马尔可夫转移律族,族的参数是可用的行动; γ是定义在Γ(Г呏{(i,ɑ):a∈A(i),i∈S}上的单值实函数;若观察到的状态为i,选用行动a,则下一步转移到状态 j的概率为q(j│i,ɑ),而且获得报酬γ(j,ɑ),它们均与系统的历史无关;V是衡量策略优劣的指标(准则)。
策略 策略是提供给决策者在各个时刻选取行动的规则,记作 π=(π0,π1,π2,..., πn,πn+1...),其中πn是时刻 n选取行动的规则。从理论上来说,为了在大范围寻求最优策略πn,最好根据时刻 n以前的历史,甚至是随机地选择最优策略。但为了便于应用,常采用既不依赖于历史、又不依赖于时间的策略,甚至可以采用确定性平稳策略。
指标 衡量策略优劣的常用指标有折扣指标和平均指标。折扣指标是指长期折扣〔把 t时刻的单位收益折合成0时刻的单位收益的βt(β<1)倍〕期望总报酬。平均指标是指单位时间的平均期望报酬。采用折扣指标的马尔可夫决策过程称为折扣模型。业已证明:若一个策略是β折扣最优的,则初始时刻的决策规则所构成的平稳策略对同一β也是折扣最优的,而且它还可以分解为若干个确定性平稳策略,它们对同一β都是最优的。现在已有计算这种策略的算法。采用平均指标的马尔可夫决策过程称为平均模型。业已证明:当状态空间S 和行动集A(i)均为有限集时,对于平均指标存在最优的确定性平稳策略;当S和(或)A(i)不是有限的情况,必须增加条件,才有最优的确定性平稳策略。计算这种策略的算法也已研制出来。
参考书目
R.A.Howard,Dynamic Programming and Markov Processes, MIT Press, Cambridge Mass., 1960.
发展概况 50年代R.贝尔曼研究动态规划时和L.S.沙普利研究随机对策时已出现马尔可夫决策过程的基本思想。R.A.霍华德(1960)和D.布莱克韦尔(1962)等人的研究工作奠定了马尔可夫决策过程的理论基础。1965年,布莱克韦尔关于一般状态空间的研究和E.B.丁金关于非时齐(非时间平稳性)的研究,推动了这一理论的发展。1960年以来,马尔可夫决策过程理论得到迅速发展,应用领域不断扩大。凡是以马尔可夫过程作为数学模型的问题,只要能引入决策和效用结构,均可应用这种理论。
数学描述 周期地进行观察的马尔可夫决策过程可用如下五元组来描述:{S,(A(i),i∈S,q,γ,V},其中S 为系统的状态空间(见状态空间法);A(i)为状态i(i∈S)的可用行动(措施,控制)集;q为时齐的马尔可夫转移律族,族的参数是可用的行动; γ是定义在Γ(Г呏{(i,ɑ):a∈A(i),i∈S}上的单值实函数;若观察到的状态为i,选用行动a,则下一步转移到状态 j的概率为q(j│i,ɑ),而且获得报酬γ(j,ɑ),它们均与系统的历史无关;V是衡量策略优劣的指标(准则)。
策略 策略是提供给决策者在各个时刻选取行动的规则,记作 π=(π0,π1,π2,..., πn,πn+1...),其中πn是时刻 n选取行动的规则。从理论上来说,为了在大范围寻求最优策略πn,最好根据时刻 n以前的历史,甚至是随机地选择最优策略。但为了便于应用,常采用既不依赖于历史、又不依赖于时间的策略,甚至可以采用确定性平稳策略。
指标 衡量策略优劣的常用指标有折扣指标和平均指标。折扣指标是指长期折扣〔把 t时刻的单位收益折合成0时刻的单位收益的βt(β<1)倍〕期望总报酬。平均指标是指单位时间的平均期望报酬。采用折扣指标的马尔可夫决策过程称为折扣模型。业已证明:若一个策略是β折扣最优的,则初始时刻的决策规则所构成的平稳策略对同一β也是折扣最优的,而且它还可以分解为若干个确定性平稳策略,它们对同一β都是最优的。现在已有计算这种策略的算法。采用平均指标的马尔可夫决策过程称为平均模型。业已证明:当状态空间S 和行动集A(i)均为有限集时,对于平均指标存在最优的确定性平稳策略;当S和(或)A(i)不是有限的情况,必须增加条件,才有最优的确定性平稳策略。计算这种策略的算法也已研制出来。
参考书目
R.A.Howard,Dynamic Programming and Markov Processes, MIT Press, Cambridge Mass., 1960.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。